Math, asked by shivam8815358034, 7 months ago

plz solve these three que 28,29,30

if not so plz only one ques plz solve it ​

Attachments:

Answers

Answered by Anonymous
1

Answer:

Step-by-step explanation:

28) Let us consider, a line segment AB.

Assume that it has two midpoints say C and D

Recall that the midpoint of a line segment divides it into two equal parts

That is AC = BC and AD = DB

Since C is midpoint of AB, we have A, C and B are collinear

∴ AC + BC = AB → (1)

Similarly, we get AD + DB = AB → (2)

From (1) and (2), we get

AC + BC = AD + DB

2 AC = 2AD

∴ AC = AD

This is a contradiction unless C and D coincide.

Therefore our assumption that a line segment AB has two midpoints is incorrect.

Thus every line segment has one and only one midpoint.

29)  ⇒ Given :- ABCD is a rhombus

AC and BD are diagonals of rhombus intersecting at O.

⇒ To prove :- ∠BOC = ∠DOC = ∠AOD = ∠AOB = 90°

⇒ Proof :- All Rhombus are parallelogram, Since all of its sides are equal.

AB = BC = CD = DA ────(1)

The diagonal of a parallelogram bisect each other

Therefore, OB = OD and OA = OC ────(2)

In ∆ BOC and ∆ DOC

BO = OD [ From 2 ]

BC = DC [ From 1 ]

OC = OC [ Common side ]

∆ BOC ≅ ∆ DOC [ By SS congruency criteria ]

∠BOC = ∠DOC [ C.P.C.T ]

∠BOC + ∠DOC = 180° [ Linear pair ]

2∠BOC = 180° [ ∠BOC = ∠DOC ]

∠BOC = 180°/2

∠BOC = 90°

∠BOC = ∠DOC = 90°

Similarly, ∠AOB = ∠AOD = 90°

Hence, ∠BOC = ∠DOC = ∠AOD = ∠AOB = 90°

we proved

30)  given :  ABCD is a parallelogram

diagonals AC and BD of parallelogram ABCD are equal in length .

proof : Consider triangles ABD and ACD.

AC = BD [Given]

AB = DC [opposite sides of a parallelogram]

AD = AD [Common side]

∴ ΔABD ≅ ΔDCA [SSS congruence criterion]

∠BAD = ∠CDA [CPCT]

∠BAD + ∠CDA = 180° [Adjacent angles of a parallelogram are supplementary.]

So, ∠BAD and ∠CDA are right angles as they are congruent and supplementary.

Therefore, parallelogram ABCD is a rectangle since a parallelogram with one right interior angle is a rectangle.

Similar questions