Chemistry, asked by Nikkisely, 9 months ago

plz solve this......☺☺​

Attachments:

Answers

Answered by Sharad001
38

Answer :-

(1)\to \boxed{ \sf{ rate = 8 \times  {10}^{  - 9}  \: {mol}^{} {L}^{-1} \:  {s}^{ - 1} }} \: \\   \\ (2)\to \boxed{ \sf{ rate = 38.88 \times  {10}^{ - 10} {mol}^{} {L}^{-1} \:  {s}^{ - 1} }} \:

To Find :-

(1) Initial rate of reaction for given data .

(2) Calculate rate of reaction after [A] is reduced to 0.06 mol L^{-1}

Explanation :-

Given that

 \to \sf{k = 2.0 \times  {10}^{ - 6} {mol}^{ - 2}   {L }^{2}  {s}^{ - 1} } \\  \\ (1) \sf{ Initial  \: rate  \: when \:  [A] =  \: 0.1 \: mol {L}^{ - 1} } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{[B] = 0.2 mol {L}^{-1}  \: } \\  \\  \to \sf{rate = k[A]{[B]}^{2} \: }  \\ \\  \sf{= (2.0 \times  {10}^{ - 6} {mol}^{ - 2}   {L }^{2}  {s}^{ - 1})(0.1mol {L}^{-1}) {(0.2 mol {L}^{-1})}^{2} } \\   \\  \to \sf{rate  = 2.0 \times  {10}^{ - 6}  \times 0.1 \times 0.04 \:  \:  {mol}^{} {L}^{-1} \:  {s}^{ - 1} } \\   \\ \to \boxed{ \sf{ rate = 8 \times  {10}^{  - 9}  \: {mol}^{} {L}^{-1} \:  {s}^{ - 1} }}

(2) Rate of reaction when [A] reduced to 0.06 mol L^(-1)

So concentration of [A] = 0.1 - 0.06 = 0.04 mol L^(-1)

Therefore concentration of [B] is

[B] = half of [A] = 0.02

→ so available [B] = 0.2 - 0.02 = 0.18

 \to \sf{}rate \:  \sf{= (2.0 \times  {10}^{ - 6} {mol}^{ - 2}   {L }^{2}  {s}^{ - 1})(0.06mol {L}^{-1}) {(0.18mol {L}^{-1})}^{2} } \:  \\  \\  \to \sf{ rate = 2.0 \times  {10}^{ - 6}  \times 0.06 \times 0.0324 \:  {mol}^{2} {L}^{-1} \:  {s}^{ - 1} } \:  \\  \\  \to \sf{rate = 0.003888 \times  {10}^{ - 6} \:  {mol}^{2} {L}^{-1} \:  {s}^{ - 1} } \:  \\  \\  \to \boxed{ \sf{ rate = 38.88 \times  {10}^{ - 10} {mol}^{} {L}^{-1} \:  {s}^{ - 1} }}

Answered by xXTheLegendXx
1

Answer:

Answer :-

(1)\to \boxed{ \sf{ rate = 8 \times  {10}^{  - 9}  \: {mol}^{} {L}^{-1} \:  {s}^{ - 1} }} \: \\   \\ (2)\to \boxed{ \sf{ rate = 38.88 \times  {10}^{ - 10} {mol}^{} {L}^{-1} \:  {s}^{ - 1} }} \:

To Find :-

(1) Initial rate of reaction for given data .

(2) Calculate rate of reaction after [A] is reduced to 0.06 mol L^{-1}

Explanation :-

Given that

 \to \sf{k = 2.0 \times  {10}^{ - 6} {mol}^{ - 2}   {L }^{2}  {s}^{ - 1} } \\  \\ (1) \sf{ Initial  \: rate  \: when \:  [A] =  \: 0.1 \: mol {L}^{ - 1} } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{[B] = 0.2 mol {L}^{-1}  \: } \\  \\  \to \sf{rate = k[A]{[B]}^{2} \: }  \\ \\  \sf{= (2.0 \times  {10}^{ - 6} {mol}^{ - 2}   {L }^{2}  {s}^{ - 1})(0.1mol {L}^{-1}) {(0.2 mol {L}^{-1})}^{2} } \\   \\  \to \sf{rate  = 2.0 \times  {10}^{ - 6}  \times 0.1 \times 0.04 \:  \:  {mol}^{} {L}^{-1} \:  {s}^{ - 1} } \\   \\ \to \boxed{ \sf{ rate = 8 \times  {10}^{  - 9}  \: {mol}^{} {L}^{-1} \:  {s}^{ - 1} }}

(2) Rate of reaction when [A] reduced to 0.06 mol L^(-1)

So concentration of [A] = 0.1 - 0.06 = 0.04 mol L^(-1)

Therefore concentration of [B] is

[B] = half of [A] = 0.02

→ so available [B] = 0.2 - 0.02 = 0.18

 \to \sf{}rate \:  \sf{= (2.0 \times  {10}^{ - 6} {mol}^{ - 2}   {L }^{2}  {s}^{ - 1})(0.06mol {L}^{-1}) {(0.18mol {L}^{-1})}^{2} } \:  \\  \\  \to \sf{ rate = 2.0 \times  {10}^{ - 6}  \times 0.06 \times 0.0324 \:  {mol}^{2} {L}^{-1} \:  {s}^{ - 1} } \:  \\  \\  \to \sf{rate = 0.003888 \times  {10}^{ - 6} \:  {mol}^{2} {L}^{-1} \:  {s}^{ - 1} } \:  \\  \\  \to \boxed{ \sf{ rate = 38.88 \times  {10}^{ - 10} {mol}^{} {L}^{-1} \:  {s}^{ - 1} }}

Similar questions