Math, asked by annesha2, 1 year ago

plz solve this...........​

Attachments:

Answers

Answered by Swarup1998
2
\underline{\text{Correcting the question:}}

\mathrm{Now,\:\frac{cos3\alpha+2\:cos5\alpha+cos7\alpha}{cos\alpha+2\:cos3\alpha+cos5\alpha}}

\mathrm{=\frac{(cos7\alpha+cos3\alpha)+2\:cos5\alpha}{(cos5\alpha+cos\alpha)+2\:cos3\alpha}}

\mathrm{=\frac{2\:cos\frac{7\alpha+3\alpha}{2}\:cos\frac{7\alpha-3\alpha}{2}+2\:cos5\alpha}{2\:cos\frac{5\alpha+\alpha}{2}\:cos\frac{5\alpha-\alpha}{2}+2\:cos3\alpha}}

\mathrm{=\frac{2\:cos5\alpha\:cos2\alpha+2\:cos5\alpha}{2\:cos3\alpha\:cos2\alpha+2\:cos3\alpha}}

\mathrm{=\frac{2\:cos5\alpha(cos2\alpha+1)}{2\:cos3\alpha(cos2\alpha+1)}}

\mathrm{=\frac{cos5\alpha}{cos3\alpha}}

\to \boxed{\small{\mathrm{\frac{cos3\alpha+2\:cos5\alpha+cos7\alpha}{cos\alpha+2\:cos3\alpha+cos5\alpha}=\frac{cos5\alpha}{cos3\alpha}}}}

\text{Hence, proved.}

\underline{\text{Rules :}}

\mathrm{1.\:sinC+sinD=2\:sin\frac{C+D}{2}\:cos\frac{C-D}{2}}

\mathrm{2.\:cosC+cosD=2\:cos\frac{C+D}{2}\:cos\frac{C-D}{2}}

\underline{\text{As per the question :}}

\mathrm{Now,\:\frac{cos3\alpha+2\:cos5\alpha+cos7\alpha}{sin3\alpha+2\:sin5\alpha+sin7\alpha}}

\mathrm{=\frac{(cos7\alpha+cos3\alpha)+2\:cos5\alpha}{(sin7\alpha+sin3\alpha)+2\:sin5\alpha}}

\mathrm{=\frac{2\:cos\frac{7\alpha+3\alpha}{2}\:cos\frac{7\alpha-3\alpha}{2}+2\:cos5\alpha}{2\:sin\frac{7\alpha+3\alpha}{2}\:cos\frac{7\alpha-3\alpha}{2}+2\:sin5\alpha}}

\mathrm{=\frac{2\:cos5\alpha\:cos2\alpha+2\:cos5\alpha}{2\:sin5\alpha\:cos2\alpha+2\:sin5\alpha}}

\mathrm{=\frac{2\:cos5\alpha(cos2\alpha+1)}{2\:sin5\alpha(cos2\alpha+1)}}

\mathrm{=\frac{cos5\alpha}{sin5\alpha}}

\mathrm{=cot5\alpha}

\to \boxed{\small{\mathrm{\frac{cos3\alpha+2\:cos5\alpha+cos7\alpha}{sin3\alpha+2\:sin5\alpha+sin7\alpha}=cot5\alpha}}}

\text{This is the required simplification.}

annesha2: tomorrow i shall go to my math class and I shall check it..
Swarup1998: If the question is correct, see the 2nd answer. If the proof is correct, see the 1st answer.
Swarup1998: Write down both the solutions...
annesha2: Now I have no way to check this sum..
annesha2: Hmmm
annesha2: Thanks
annesha2: i think my sir gave an incorrect question
annesha2: so i don't solve it
Swarup1998: ^-^ okkie as you wish :)
annesha2: hmm
Similar questions
History, 6 months ago