Math, asked by manojrajoria19pb2h2m, 10 months ago

Plz solve this and explain all the steps clearly
integration( \frac{x {}^{2} + 4 }{ {x}^{2} } )

Answers

Answered by Anonymous
7

Answer :

(x + 1/x) is the required value

Given :

  • (x²+4)/x²

To Find :

\sf \bullet \: \: \int \dfrac{x^{2} + 4}{x^{2}}dx

Identity to be used :

\sf \bullet \: \: \int x^{n} = \dfrac{x^{n+1}}{n+1} + C

Where C be any constant

Solution :

\sf \longrightarrow \int \dfrac{x^{2}+4}{x^{2}}dx \\\\\sf\longrightarrow \int \{ \dfrac{x^{2}}{x^{2}} + \dfrac{4}{x^{2}} \}\\\\ \sf \longrightarrow\int .1. dx  + 4\int x^{-2} dx  \\\\ \sf \longrightarrow x + 4\times \{\dfrac{x^{-2+1}}{-2+1} \} + C  \\\\ \sf \longrightarrow x -  4x^{-1} + C \\\\ \sf \longrightarrow x - \dfrac{4}{x} + C

Some other Identities :

\sf \bullet \: \: \int \dfrac{1}{x}dx = \log_{e} x + C \\\\ \sf \bullet \: \: \int \cos x dx  = \sin x + C \\\\ \sf \bullet \: \: \int \sin x dx = -\cos x + C \\\\ \sf \bullet \: \: \int \sec^{2} x dx = \tan x + C \\\\ \sf \bullet \: \: \int \csc^{2} x dx = -\cot x + C \\\\ \sf \bullet \: \: \int \sec x \tan x  dx = \sec x + C \\\\ \sf \bullet \: \: \int \csc x \cot x dx = -\cosec x + C \\\\ \sf \bullet \: \: \int e^{x}dx = e^{x} + C \\\\ \sf \bullet \: \: \int a^{x} dx = \dfrac{a^{x}}{log_{e}^{a} } + C

Answered by Anonymous
16

AnswEr :

Given Integrand,

 \displaystyle \sf \: l =  \int \dfrac{ {x}^{2} + 4 }{ {x}^{2} } dx

Re writting the expression,

  \longrightarrow \: \displaystyle \sf \: l =  \int ({x}^{2} + 4) {x}^{ - 2}  dx \\  \\   \displaystyle \: \longrightarrow \:  \sf \: l \:  =  \int(1 +  {4x}^{ - 2} )dx

We know that,

  •  \displaystyle \sf  \int \: x {}^{n} dx =  \dfrac{x {}^{n + 1} }{n +1 }  + c

Now,

 \longrightarrow \:  \displaystyle \:  \sf \: l =  \int \: dx + 4 \int \:  {x}^{ - 2} dx \\  \\  \longrightarrow \:  \displaystyle \:  \sf \: l = x + 4 \bigg( -  \dfrac{1}{x}  \bigg) + c \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf l = x -  \dfrac{4}{x} + c }}


MagicalCupcake: enought!.
MagicalCupcake: xD ur acc reoorted
MagicalCupcake: reported*
MagicalCupcake: huh!
Similar questions