Math, asked by rudrakshbhardawaj, 8 months ago

plz solve this and plz don't spam ,solve all questions ​

Attachments:

Answers

Answered by Pushpmala
2

Answer:

(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ

L.H.S. = tan θ/(1-cot θ) + cot θ/(1-tan θ)

We know that tan θ =sin θ/cos θ

cot θ = cos θ/sin θ

Now, substitute it in the given equation, to convert it in a simplified form

           = [(sin θ/cos θ)/1-(cos θ/sin θ)] + [(cos θ/sin θ)/1-(sin θ/cos θ)]

           = [(sin θ/cos θ)/(sin θ-cos θ)/sin θ] + [(cos θ/sin θ)/(cos θ-sin θ)/cos θ]

           = sin2θ/[cos θ(sin θ-cos θ)] + cos2θ/[sin θ(cos θ-sin θ)]

           = sin2θ/[cos θ(sin θ-cos θ)] – cos2θ/[sin θ(sin θ-cos θ)]

           = 1/(sin θ-cos θ) [(sin2θ/cos θ) – (cos2θ/sin θ)]

           = 1/(sin θ-cos θ) × [(sin3θ – cos3θ)/sin θ cos θ]

           = [(sin θ-cos θ)(sin2θ+cos2θ+sin θ cos θ)]/[(sin θ-cos θ)sin θ cos θ]

           = (1 + sin θ cos θ)/sin θ cos θ

           = 1/sin θ cos θ + 1

           = 1 + sec θ cosec θ = R.H.S.

Therefore, L.H.S. = R.H.S.

Hence proved

(iv)  (1 + sec A)/sec A = sin2A/(1-cos A)

First find the simplified form of L.H.S

L.H.S. = (1 + sec A)/sec A

Since secant function is the inverse function of cos function and it is written as

           = (1 + 1/cos A)/1/cos A

           = (cos A + 1)/cos A/1/cos A

Therefore, (1 + sec A)/sec A = cos A + 1

R.H.S. = sin2A/(1-cos A)

We know that sin2A = (1 – cos2A), we get

            = (1 – cos2A)/(1-cos A)

            = (1-cos A)(1+cos A)/(1-cos A)

Therefore, sin2A/(1-cos A)= cos A + 1

L.H.S. = R.H.S.

Hence proved

(v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A, using the identity cosec2A = 1+cot2A.

With the help of identity function, cosec2A = 1+cot2A, let us prove the above equation.

L.H.S. = (cos A–sin A+1)/(cos A+sin A–1)

Divide the numerator and denominator by sin A, we get

 = (cos A–sin A+1)/sin A/(cos A+sin A–1)/sin A

We know that cos A/sin A = cot A and 1/sin A = cosec A

 = (cot A – 1 + cosec A)/(cot A+ 1 – cosec A)

 = (cot A – cosec2A + cot2A + cosec A)/(cot A+ 1 – cosec A) (using cosec2A – cot2A = 1

= [(cot A + cosec A) – (cosec2A – cot2A)]/(cot A+ 1 – cosec A)

= [(cot A + cosec A) – (cosec A + cot A)(cosec A – cot A)]/(1 – cosec A + cot A)

=  (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)

=  cot A + cosec A = R.H.S.

Therefore, (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A

Hence Proved

(vii) (sin θ – 2sin3θ)/(2cos3θ-cos θ) = tan θ

L.H.S. = (sin θ – 2sin3θ)/(2cos3θ – cos θ)

Take sin θ as in numerator and cos θ in denominator as outside, it becomes

           = [sin θ(1 – 2sin2θ)]/[cos θ(2cos2θ- 1)]

We know that sin2θ = 1-cos2θ

           = sin θ[1 – 2(1-cos2θ)]/[cos θ(2cos2θ -1)]

          = [sin θ(2cos2θ -1)]/[cos θ(2cos2θ -1)]

          = tan θ = R.H.S.

Hence proved

(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7+tan2A+cot2A

L.H.S. = (sin A + cosec A)2 + (cos A + sec A)2

It is of the form (a+b)2, expand it

(a+b)2 =a2 + b2 +2ab

               = (sin2A + cosec2A + 2 sin A cosec A) + (cos2A + sec2A + 2 cos A sec A)

           = (sin2A + cos2A) + 2 sin A(1/sin A) + 2 cos A(1/cos A) + 1 + tan2A + 1 + cot2A

           = 1 + 2 + 2 + 2 + tan2A + cot2A

           = 7+tan2A+cot2A = R.H.S.

Therefore, (sin A + cosec A)2 + (cos A + sec A)2 = 7+tan2A+cot2A

Hence proved.

(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)

First, find the simplified form of L.H.S

L.H.S. = (cosec A – sin A)(sec A – cos A)

Now, substitute the inverse and equivalent trigonometric ratio forms

           = (1/sin A – sin A)(1/cos A – cos A)

           = [(1-sin2A)/sin A][(1-cos2A)/cos A]

           = (cos2A/sin A)×(sin2A/cos A)

           = cos A sin A

Now, simplify the R.H.S

R.H.S. = 1/(tan A+cotA)

            = 1/(sin A/cos A +cos A/sin A)

            = 1/[(sin2A+cos2A)/sin A cos A]

            = cos A sin A

L.H.S. = R.H.S.

(cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)

Hence proved

(x)  (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A

L.H.S. = (1+tan2A/1+cot2A)

Since cot function is the inverse of tan function,

           = (1+tan2A/1+1/tan2A)

           = 1+tan2A/[(1+tan2A)/tan2A]

Now cancel the 1+tan2A terms, we get

           = tan2A

(1+tan2A/1+cot2A) = tan2A

Similarly,

(1-tan A/1-cot A)2 = tan2A

Hence proved

HOPE IT MAY HELPFUL !!!!

 

Answered by Anonymous
1

What was your answer to my question?

Similar questions