Math, asked by satya4087, 6 months ago

plz solve this don't spam, I will mark brainliast for the good explanation ​

Attachments:

Answers

Answered by shubham01794
1

Answer:

1

Step-by-step explanation:

a^3+b^3= (a+b)(a^2-ab+b^2)

=(sin©+cos©)(sin^2©-sin©cos©+cos^2©)/(sin©+cos©) + (sin©cos©)

=1-sin©cos©+sin©cos©

1

Answered by Arceus02
9

Given:-

Simplify :-

\sf \bigg(\dfrac{sin^3\theta + cos^3\theta}{sin\theta + cos\theta}\bigg) + sin\theta cos\theta

\\

Answer:-

\sf \bigg(\dfrac{sin^3\theta + cos^3\theta}{sin\theta + cos\theta}\bigg) + sin\theta cos\theta

\\

 {\green{\bigstar}} \boxed{\sf{a^3+b^3 = (a+b)(a^2+b^2-ab)}}

\\

\sf \longrightarrow \scriptsize \bigg\{ \dfrac{(sin\theta + cos\theta)(sin^2\theta + cos^2\theta - sin\theta cos\theta)}{sin\theta + cos\theta}\bigg\} + sin\theta cos\theta

\\

\sf \longrightarrow \scriptsize \bigg\{ \dfrac{{\cancel{(sin\theta + cos\theta)}}(sin^2\theta + cos^2\theta - sin\theta cos\theta)}{{\cancel{sin\theta + cos\theta}}}\bigg\} + sin\theta cos\theta

\\

 {\blue{\bigstar}} \boxed{\sf{sin^2\theta + cos^2\theta = 1}}

\\

\sf \longrightarrow 1 - sin\theta cos \theta + sin\theta cos\theta

\\

\sf \longrightarrow 1 \quad  {\cancel{- sin\theta cos \theta}} \quad {\cancel{ + sin\theta cos\theta}}

\\

\longrightarrow \underline{\underline{\sf{\green{\;\;1\;\;}}}}

Similar questions