Math, asked by sonusagar50, 10 hours ago

plz solve this equation.

Attachments:

Answers

Answered by Sen0rita
9

S O L U T I O N :

 \:

 \sf :  \implies \: log_{x} 2.log_{2x} 2 = log_{4x} 2 \\  \\ \\  \sf :  \implies \:  \frac{1}{log_{2} x} . \frac{1}{log_{2} 2x }  =  \frac{1}{log_{2} 4x}  \\ \\ \\  \sf  :  \implies \: \frac{1}{log_{2} x}.\frac{1}{(log_{2} 2 + log_{2} x)} =  \frac{1}{(log_{2} 4 +log_{2} x) }

 \:

 \sf  \: Let \: the \: value \: of \: log_{ 2} x \: be  \:  \bold{t}.

 \:

 \sf :  \implies \: \left( \dfrac{1}{t}  \right)\left( \dfrac{1}{1 + t}  \right) = \left( \dfrac{1}{ 2 + t}  \right) \\ \\ \\  \sf :  \implies \:t \: (1 + t) = (2 + t) \\  \\ \\ \sf :  \implies \: {t}^{2}  + t = 2 + t \\ \\ \\  \sf :  \implies \: {t}^{2}  = 2 \\  \\  \\ \sf :  \implies \:t =   +  \sqrt{2} , -  \sqrt{2}

 \:

 \sf \: Now, \: let's \: put \: the \: value \: of \:  \bold{t}

 \:

 \sf :  \implies \: log_{ 2} x =  \sqrt{2},  -  \sqrt{2}  \\  \\ \\ \sf :  \implies \:x =  {2}^{ \sqrt{2} }  \: , {2}^{ -  \sqrt{2} }

 \:

 \sf \therefore\underline{Hence, \: the \: answer \: is \:   \bold{{2}^{ \sqrt{2} } } \: and \:   \bold{{2}^{ -  \sqrt{2} }} }

Similar questions