Math, asked by samakhan23, 9 months ago

plz solve this fast​

Attachments:

Answers

Answered by Cynefin
3

 \huge{ \sf{ \orange{ \mid{ \underline{ \overline{ \pink{work \: out...}}}}}}}

 \large{ \bold{ \red{ \underline{ \underline{Question...}}}}}

 \large{ \sf{ \:  \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2}  - 2 \sqrt{3}  }  = a + b \sqrt{6} }}

 \large{ \bold{ \green{ \underline{ \underline{Solution...}}}}}

 \large{ \sf{ \red{rationalizing \: denominator \: first..}}} \\  \\  \large{ \sf{ \to \:  \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{3}  } }} \\  \\  \large{ \sf{ \to \:  \frac{ (\sqrt{2} +  \sqrt{3})(3 \sqrt{2} +  2 \sqrt{3} )  }{(3 \sqrt{2} - 2 \sqrt{3})(3 \sqrt{2} + 2 \sqrt{3} ) } }} \\  \\  \large{ \sf{ \to \:  \frac{6 + 3 \sqrt{6} + 2 \sqrt{6} + 6  }{(3 \sqrt{2}) {}^{2}  - (2 \sqrt{3}) {}^{2}   } }} \\  \large{ \sf{by \: using \: (a - b)(a + b) =  {a}^{2}  - b {}^{2} }} \\  \\  \large{ \sf{ \to \:  \frac{12 + 5 \sqrt{6} }{18 - 12} }} \\  \\  \large{ \sf{ \to \:  \frac{ 12 + 5 \sqrt{6} }{6} }} \\  \\  \large{ \sf{ \to \:  \frac{12}{6}  +  \frac{5 \sqrt{6} }{6} }} \\  \\  \large{ \sf{ \to \: 2 +  \frac{5 \sqrt{6} }{6} }} \\  \large{ \sf{ \green{by \: comparing \: a + b \sqrt{6} }}}... \\  \\  \large{ \sf{ \boxed{ \red{ \to \: a = 2 \: \:  \:  \:  b =  \frac{5}{6} }}}}

 \large{ \blue{ \bold{required \: answer...}}}

 \large{ \bold{ \orange{ nothing \: beats \: a \: great \: smile...}}} \\  \large{ \bold{ \orange{ so \: keep \: smililing \: always...}}}

Similar questions