Math, asked by veenit35, 1 year ago

plz solve this fast​

Attachments:

Answers

Answered by vishalkumar2806
0

 - 2sin \frac{x}{2}  =     \sqrt{1 + sin \: x }  + \sqrt{1 - sin \: x}  \\  \sqrt{1 + sinx}  =  \sqrt{sin {}^{2}  \frac{x}{2} + cos {}^{2}  \frac{x}{2} + 2sin \frac{x}{2}cos \frac{x}{2}  }  \\  =  \sqrt{ (sin \frac{x}{2}  + cos \frac{x}{2} ) {}^{2} } \\  = (sin \frac{x}{2}  + cos \frac{x}{2} )  \\ \sqrt{1  -  sinx}  =  \sqrt{sin {}^{2}  \frac{x}{2} + cos {}^{2}  \frac{x}{2}  - 2sin \frac{x}{2}cos \frac{x}{2}  }  \\  =  \sqrt{ (sin \frac{x}{2}   -  cos \frac{x}{2} ) {}^{2} } \\  = (sin \frac{x}{2}   - cos \frac{x}{2} ) \\ adding \:  \\  = 2sin \frac{x}{2}  \\ as \: x = 460 \\  \frac{x}{2}  = 230(iii \: qudrnt) \\ sin \: is \:  - ve \: so \\  =  - 2sin \frac{x}{2}

Similar questions