Math, asked by sowmiya35, 1 year ago

plz solve this friend
the ANS for h is 16

Attachments:

Answers

Answered by siddhartharao77
2

Answer:

2745.6

Step-by-step explanation:

Given, lower end of the frustum (r₁) = 8 cm.

Given, upper end of the frustum (r₂) = 20 cm.

Let the frustum be 'h' cm.

(i)

We know that volume of frustum(v₁) = (1/3)π(r₁² + r₂² + r₁r₂)h

⇒ (1/3)(22/7)[8² + 20² + 8(20)]h

⇒ (22/21)[64 + 400 + 160]h

⇒ (22/21)[624]

⇒ ~653.4h


(ii)

Given volume of milk container(v₂)= 10459 (3/7) cm³

                                                        = 73216/7

                                                        = 10459.4


On solving both volumes, we get

⇒ 653.4h = 10459.4

⇒ h = 10459.4/653.4

h = 16 cm


(iii)

We know that Slant height(l) = √(r₁ - r₂)² + h²

⇒ √(20 - 8)² + 16²

⇒ √12² + 16²

⇒ 20 cm.


We know that Total surface area of the container:

⇒ π(r₁ + r₂) * l + πr₁²

⇒ (22/7) * (8 + 20) * 20 + (22/7) * (8)²

⇒ (22/7)[28 * 20 + 64]

⇒ (22/7)[624]

⇒ 1961.14 cm².


Given that cost of 1 cm² metal sheet = 1.40 per cm².

So, cost of 1961.14 cm² required sheet:

⇒ 1.40 * 1961.14

⇒ 2745.6 .


Therefore, cost of required sheet = 2745.6.


Hope it helps!

Answered by Siddharta7
3

Answer:

2745.6

Step-by-step explanation:

Given, lower end of the frustum (r₁) = 8 cm.

Given, upper end of the frustum (r₂) = 20 cm.

Let the frustum be 'h' cm.

(i)

We know that volume of frustum(v₁) = (1/3)π(r₁² + r₂² + r₁r₂)h

⇒ (1/3)(22/7)[8² + 20² + 8(20)]h

⇒ (22/21)[64 + 400 + 160]h


⇒ (22/21)[624]


⇒ ~653.4h


(ii)


Given volume of milk container(v₂)= 10459 (3/7) cm³


                                                        = 73216/7


                                                        = 10459.4


On solving both volumes, we get


⇒ 653.4h = 10459.4


⇒ h = 10459.4/653.4


⇒ h = 16 cm


(iii)


We know that Slant height(l) = √(r₁ - r₂)² + h²


⇒ √(20 - 8)² + 16²


⇒ √12² + 16²


⇒ 20 cm.


We know that Total surface area of the container:


⇒ π(r₁ + r₂) * l + πr₁²


⇒ (22/7) * (8 + 20) * 20 + (22/7) * (8)²


⇒ (22/7)[28 * 20 + 64]


⇒ (22/7)[624]


⇒ 1961.14 cm².


Given that cost of 1 cm² metal sheet = 1.40 per cm².


So, cost of 1961.14 cm² required sheet:


⇒ 1.40 * 1961.14


⇒ 2745.6 .

Therefore, cost of required sheet = 2745.6.

Similar questions