Math, asked by Areebamir, 11 months ago

plz solve this from differentiation ​

Attachments:

Answers

Answered by Anonymous
1

Step-by-step explanation:

d(x³+1/x³-1)

(x³-1)(3x²)-(x³+1)(3x²) / (x³-1)²

3x²(x³-1-x³-1) / (x³-1)²

-6x² / (x³-1)²

Answered by kaushik05
59

 \huge \:  \mathfrak{solution}

To Differentiate :

 \star \:  \frac{ {x}^{3} + 1 }{ {x}^{3} - 1 }  \\

Here we use the formula :

  \boxed{ \bold{\frac{d}{dx} ( \frac{u}{v} ) =  \frac{v \:  \frac{d}{dx}(u) - u \:  \frac{d}{dx}(v)  }{ {v}^{2} } }} \\

 \star \:  \frac{d}{dx} ( \frac{ {x}^{3} + 1 }{ {x}^{3 } - 1 } ) \\  \\  \star \:  \frac{ ({x}^{3} - 1 )\frac{d}{dx}( {x}^{3} + 1) -  ({x}^{3}  + 1) \frac{d}{dx}(   {x}^{3}  - 1)   }{( {x}^{3}  - 1) ^{2} }  \\  \\  \star \frac{( {x}^{3} - 1)(3 {x}^{2} + 0)  - ( {x}^{3}  + 1)(3 {x}^{2}  - 0) }{( {x}^{3}  - 1) ^{2} }  \\  \\  \star \:  \frac{(3 {x}^{5} + 0 - 3 {x}^{2}  - 0) - (3 {x}^{5} - 0 + 3 {x}^{2}   - 0) }{( {x}^{3}  - 1) ^{2} }  \\  \\  \star \:  \frac{  \cancel{3 {x}^{5}} - 3 {x}^{2}  -  \cancel{3 {x}^{5} } - 3 {x}^{2}   }{( {x}^{3} - 1)^{2}  }  \\  \\  \star \:  \frac{ - 6 {x}^{2} }{( {x}^{3} - 1) ^{2}  }

Similar questions