Math, asked by gurwinderkaur83104, 7 months ago

plz solve this it's urgent ​

Attachments:

Answers

Answered by ItzLoveHunter
20

\huge\bf\boxed{\boxed{\underline{\red{Answer!!}}}}

Let the breadth of the rectangle be = x

Let the length of the rectangle be = (x + 3)

We know the formula :

{\green{\overline{\green{\underline{\blue{\boxed{\orange{\mathtt{</em><em>Area</em><em> </em><em>\</em><em>:</em><em>of</em><em> </em><em>\</em><em>:</em><em>rectangle</em><em> </em><em>=</em><em> </em><em>\</em><em>:</em><em>Length</em><em> </em><em>×</em><em> </em><em>\</em><em>:</em><em>breadth</em><em>}}}}}}}}}

So : x ( x + 3 )

=> x² + 3x ---------------(1)

Now :

Given in question ;

If the length is increase by = 9cm = x + 3 + 9

So the length will be = x + 12

If the breadth is reduced by = 5cm = x - 5

So the breadth will be = x - 5

Area Of Rectangle = l × b

So (x + 12) (x - 5)

=> x (x - 5) + 12 (x - 5)

=> x² - 5x + 12x - 60

=> x² + 7x - 60 -----------(2)

Now equate both eq(1) and (2)

➪ x² + 3x = x² + 7x - 60

\cancel{x²} + 3x = \cancel{x²} + 7x - 60

➪ 3x = 7x - 60

➪ 3x - 7x = 60

➪ 4x = 60

➪ x = \frac{60}{4}

➪ x = 15

  • So The breadth is 15cm
  • And the length is = (x + 3 ) = 15 + 3 = 18cm
Answered by itsAwesomeSoul
16

Step-by-step explanation:

Let the breadth of the rectangle be = x</p><p></p><p>Let the length of the rectangle be = (x + 3)</p><p></p><p>We know the formula :</p><p></p><p>{\green{\overline{\green{\underline{\blue{\boxed{\orange{\mathtt{Area \:of \:rectangle = \:Length × \:breadth}}}}}}}}}Areaofrectangle=Length×breadth</p><p></p><p>So : x ( x + 3 )</p><p></p><p>=&gt; x² + 3x ---------------(1)</p><p></p><p>Now :</p><p></p><p>Given in question ;</p><p></p><p>If the length is increase by = 9cm = x + 3 + 9</p><p></p><p>So the length will be = x + 12</p><p></p><p>If the breadth is reduced by = 5cm = x - 5</p><p></p><p>So the breadth will be = x - 5</p><p></p><p>Area Of Rectangle = l × b</p><p></p><p>So (x + 12) (x - 5)</p><p></p><p>=&gt; x (x - 5) + 12 (x - 5)</p><p></p><p>=&gt; x² - 5x + 12x - 60</p><p></p><p>=&gt; x² + 7x - 60 -----------(2)</p><p></p><p>Now equate both eq(1) and (2)</p><p></p><p>➪ x² + 3x = x² + 7x - 60</p><p></p><p>➪ \cancel{x²}x² + 3x = \cancel{x²}x² + 7x - 60</p><p></p><p>➪ 3x = 7x - 60</p><p></p><p>➪ 3x - 7x = 60</p><p></p><p>➪ 4x = 60</p><p></p><p>➪ x = \frac{60}{4}460</p><p></p><p>➪ x = 15</p><p></p><p>So The breadth is 15cm</p><p></p><p>And the length is = (x + 3 ) = 15 + 3 = 18cm</p><p></p><p>

Mark as Brainlist

Similar questions