Math, asked by jajju02, 4 months ago

plz solve this its urgent so plz co-operate​

Attachments:

Answers

Answered by Anonymous
2

Required solution:

‎ ‎ ‎ ‎ ‎ ‎

GIVEN:

  • Sin ɑ=Cos þ

‎ ‎ ‎

TO FIND:

  • ɑ+þ

‎ ‎ ‎

CONCEPT:

Here's the concept of trigonometry is used where we have given value of sin ɑ and Cos þ be equal. To find the value of ɑ+þ, we have to find in which situation does these both ratios are equal.

From the lower trigonometry ratio we can see that when both sin and cos have angle 45°,these both terms are equal.

i.e.

{ \sf{ Sin \:  {45 \degree}=Cos  \: {45 \degree}= \frac{1}{ \sqrt{3} } }}

‎ ‎ ‎

Hence value of both ɑ and þ are 45°.

∴ɑ+þ=45°+45°=90°

‎ ‎ ‎

‎ ‎ ‎

TRIGONOMETRY RATIOS:

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\tt Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c|c|c|c|c|c|} \tt\angle A & \bf{0}^{ \circ} & \tt{30}^{ \circ} & \tt{45}^{ \circ} & \tt{60}^{ \circ} & \tt{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

NOTEIf you are not able to read table kindly visit web.

Similar questions