Math, asked by pratikshajawale, 4 months ago

plz solve this
lesson = algebraic expressions and identities​

Attachments:

Answers

Answered by user0888
7

Calculation

(1) and (2) are alternative methods using substitution. You can go with expanding and grouping like terms.

(1) Let t=x+y+z.

Note that

  • t-2y-2z=x-y-z
  • t-2z=x+y-z
  • t-2y=x-y+z

Then

\implies 2x(t-2y-2z)+2y(t-2z)+2z(t-2y)

Expand and group like terms for t.

=t(2x+2y+2z)-4xy-4zx-4yz-4yz

=2t^2-4xy-8yz-4zx

=2(x^2+y^2+z^2+2xy+2yz+2zx)-4xy-8yz-4zx

=2x^2+2y^2+2z^2-4yz

(2) Let t=a+b+c.

Note that

  • t-2b=a-b+c
  • t-2c=a+b-c
  • t-2b-2c=a-b-c

\implies 3a(t-2b)+2b(t-2c)-2c(t-2b-2c)

= 2a(t-2b)+2b(t-2c)-2c(t-2b-2c)+a(t-2b)

Expand and group like terms for t.

=t(2a+2b-2c)-4ab-4bc+4bc+4c^2+a(a-b+c)

=t(2a+2b-2c)-4ab+4c^2+a^2-ab+ca

=2(a+b+c)(a+b-c)-5ab+4c^2+a^2+ca

=2(a+b)^2-2c^2-5ab+4c^2+a^2+ca

=2(a^2+2ab+b^2)+2c^2-5ab+a^2+ca

=3a^2+2b^2+2c^2-ab+ca

(3) F.O.I.L Method

(a+b)(c-d)+(a-b)(c+d)+2(ac+bd)

=(ac-ad+bc-bd)+(ac+ad-bc-bd)+2(ac+bd)

=2ac-2bd+2ac+2bd

=4ac

(4) Difference of two squares.

(a+b+c)(a+b-c)-2ab

=(a+b)^2-c^2-2ab

=(a^2+2ab+b^2)-c^2-2ab

=a^2+b^2-c^2

Similar questions