Math, asked by pratiksha00001, 10 months ago

plz solve this n send ​

Attachments:

Answers

Answered by ITzBrainlyGuy
2

TO FIND :

{ \bf{  lim_{x \to1}( \frac{1 + cos\pi x}{\pi( {1 - x)}^{2} } ) }}

ANSWER :

Using L'Hopital's rule

L'Hopital's rule:

Since evaluating the limits of the numerator and denominator would result in an intermediate form

 {\sf{  lim_{x \to1}( \frac{ \frac{d}{dx} (1 + cos\pi x)}{ \frac{d}{dx} (\pi {(1 - x)}^{2} )} )  }}

{ \sf{ lim_{ x\to1}( \frac{ - \pi sin\pi x}{ - 2\pi + 2\pi x} )}}

Taking common

{ \sf{  lim_{x \to1}(  \frac{ -   \cancel{ \pi} sin\pi x}{  \cancel{\pi}( - 2  +  2x)} ) }}

{ \sf{ lim_{x \to1}(  - \frac{sin\pi x}{ - 2 + 2x} ) }}

Again using L'Hopital's rule

 - { \sf{  lim_{x \to1}( \frac{ \frac{d}{dx}( sin\pi x)}{ \frac{d}{dx} ( - 2 + 2x)} ) }}

{ \sf{  -  lim_{x \to1}(\frac{\pi cos\pi x}{2}) }}

Evaluate the limit

 \to { \sf{  -  \frac{\pi cos\pi}{2} }}

Simply the expression

We know that

π = 180° = 90° + 90°

cos(90° + 90°) = - sin90° = - 1

Substitute

 \to{ \bf{  \frac{ -\pi ( - 1)}{2} =  \frac{\pi}{2}  }}

Hence

{ \bf{  lim_{x \to1}( \frac{1 + cos\pi x}{\pi( {1 - x)}^{2} } )  =  \frac{\pi}{2} }}

Similar questions