Math, asked by Suraj1935, 11 months ago

plz solve this problem​

Attachments:

Answers

Answered by erinna
0

Given:

\dfrac{6x^2-7x-5}{8+2x-x^2}+\dfrac{9x^2-12x-5}{4+11x-3x^2}

To find:

Simplified form of given expression.

Solution:

We have,

\dfrac{6x^2-7x-5}{8+2x-x^2}+\dfrac{9x^2-12x-5}{4+11x-3x^2}

=\dfrac{6x^2-10x+3x-5}{8+4x-2x-x^2}+\dfrac{9x^2-15x+3x-5}{4+12x-x-3x^2}

=\dfrac{2x(3x-5)+(3x-5)}{4(2+x)-x(2+x)}+\dfrac{3x(3x-5)+(3x-5)}{4(1+3x)-x(1+3x)}

=\dfrac{(3x-5)(2x+1)}{(2+x)(4-x)}+\dfrac{3x-5}{4-x}

=\dfrac{(3x-5)(2x+1)+(3x-5)(2+x)}{(2+x)(4-x)}

=\dfrac{(3x-5)(2x+1+2+x)}{(2+x)(4-x)}

=\dfrac{(3x-5)(3x+3)}{(2+x)(4-x)}

Therefore, the simplified form of given expression is \dfrac{(3x-5)(3x+3)}{(2+x)(4-x)}.

Similar questions