Math, asked by 2004muskansoni, 8 months ago

plz solve this problem ​

Attachments:

Answers

Answered by Anonymous
14

Given:

\\

\dfrac{1-\cos\theta}{\sin\theta}=\dfrac{\sin\theta}{1+\cos\theta}

\\\\

To Calculate:

\\

To Prove LHS = RHS

\\\\

Answer:

\\

First, we will solve LHS.

\\

LHS:

\\

We can write sin \theta as \sqrt{1-\cos^2\theta}.

\\\dfrac{1-\cos\theta}{\sqrt{1-\cos^2\theta}}

Squaring LHS, we get :

\\

\dfrac{(1-\cos\theta)^2}{1-\cos^2\theta}\\

We know that,

a^2-b^2=(a+b)(a-b)\\

\dfrac{(1-\cos\theta)^2}{(1-\cos\theta)(1+\cos\theta)}\\\\\dfrac{1-\cos\theta}{1+\cos\theta}\\

Multiplying numerator and denominator by (1+cos\theta), we get:

\dfrac{1-\cos\theta}{1+\cos\theta}\times\dfrac{1+\cos\theta}{1+\cos\theta}\\\\\dfrac{1-\cos^2\theta}{(1+\cos\theta)^2}\\

We know that,

(1-\cos^2\theta)=\sin^2\theta

\\

\dfrac{\sin^2\theta}{(1-\cos\theta)^2}\\\\\left(\dfrac{\sin\theta}{1+\cos\theta}\right)^2\\

Square rooting LHS , we get:

\dfrac{\sin\theta}{1+\cos\theta}\\

LHS = RHS

Hence Proved.

⭐Other Trigonometric

Identities:⭐

\\\\\sf1)\:{\sin}^{2}\theta+{\cos}^{2}\theta=1\\ \sf 2) \: {\sec}^{2} \theta - {\tan}^{2} \theta = 1\\ \sf 3) \: {\csc}^{2} \theta - {\cot}^{2} \theta = 1\\\\

⭐Trigonometric Ratios:⭐

\\\\ \tt 1) \: \sin\theta = \frac{1}{ \csc \theta} \\ \tt 2) \: \cos \: \theta \: \: = \: \frac{1}{\sec\theta} \\ \tt 3) \: \tan \: \theta \: = \: \frac{1}{\cot \: \theta} \\ \tt 4) \: \cot \: \theta \: = \: \frac{1}{\tan \: \theta} \\ \tt 5) \: \sec \: \theta \: = \: \frac{1}{\cos \: \theta} \\ \tt 6) \:\csc\:\theta= \frac{1}{\sin \: \theta}\\\\

Similar questions