Math, asked by Mayank362100, 1 month ago

plz solve this problem ​

Attachments:

Answers

Answered by mathdude500
12

Given Question :-

Solve for x :-

\rm :\longmapsto\:x = \dfrac{1}{2 - \dfrac{1}{2 - \dfrac{1}{2 - x} } }

(a) x = 2

(b) x = - 1

(c) x = 1

(d) x = 3

 \red{\large\underline{\sf{Solution-}}}

Given equation is

\rm :\longmapsto\:x = \dfrac{1}{2 - \dfrac{1}{2 - \dfrac{1}{2 - x} } }

can be rewritten as after Taking lcm,

\rm :\longmapsto\:x = \dfrac{1}{2 - \dfrac{1}{\dfrac{4 - 2x - 1}{2 - x} } }

\rm :\longmapsto\:x = \dfrac{1}{2 - \dfrac{1}{\dfrac{3 - 2x }{2 - x} } }

\rm :\longmapsto\:x = \dfrac{1}{2 - \dfrac{2 - x}{{3 - 2x }}}

\rm :\longmapsto\:x = \dfrac{1}{ \dfrac{6 - 4x - (2 - x)}{{3 - 2x }}}

\rm :\longmapsto\:x = \dfrac{1}{ \dfrac{6 - 4x - 2  + x}{{3 - 2x }}}

\rm :\longmapsto\:x = \dfrac{1}{ \dfrac{4 - 3x}{{3 - 2x }}}

\rm :\longmapsto\:x = \dfrac{3 - 2x}{{4 - 3x}}

\rm :\longmapsto\:x(4 - 3x) = 3 - 2x

\rm :\longmapsto\:4x - 3 {x}^{2} = 3 - 2x

\rm :\longmapsto\:4x - 3 {x}^{2} - 3  +  2x = 0

\rm :\longmapsto\:6x - 3 {x}^{2} - 3  = 0

\rm :\longmapsto\: - 3( {x}^{2} - 2x + 1) = 0

\rm :\longmapsto\: {x}^{2} - 2x + 1= 0

\rm :\longmapsto\: {(x - 1)}^{2}  = 0

\bf\implies \:x = 1

  • Hence, Option (c) is correct

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions