Math, asked by harshadkaldate1, 7 days ago

plz solve this problem fast..​

Attachments:

Answers

Answered by mathdude500
10

\large\underline{\sf{Given \:Question - }}

Identify the zeroes of the given polynomial

\rm :\longmapsto\:p(z) =  {4z}^{2} - 15z\pi \:  - 4 {\pi}^{2}

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\:p(z) =  {4z}^{2} - 15z\pi \:  - 4 {\pi}^{2}

can be rewritten as

\rm :\longmapsto\:p(z) =  {4z}^{2} - 16z\pi \: + z\pi \:   - 4 {\pi}^{2}

\rm :\longmapsto\:p(z) =  4z(z - 4\pi \:) + \pi \:(z - 4\pi \:)

\rm :\longmapsto\:p(z) =  (z - 4\pi \:)(4z + \pi \:)

To find zeroes of p(z), Substitute

\rm :\longmapsto\:p(z) = 0

Thus,

\rm :\longmapsto\:(z - 4\pi \:)(4z + \pi \:) = 0

\bf\implies \:z = 4\pi \: \:  \:  \: or \:  \:  \:  \: z  \: = -  \:  \dfrac{\pi}{4}

Verification :-

Given polynomial is

\rm :\longmapsto\:p(z) =  {4z}^{2} - 15z\pi \:  - 4 {\pi}^{2}

Case :- 1

\red{ \boxed{ \sf{ \:z = 4\pi \:}}}

On substituting the value of z, in above polynomial, we get

\rm :\longmapsto\:p(4\pi \:) =  {4(4\pi \:)}^{2} - 15(4\pi \:)\pi \:  - 4 {\pi}^{2}

\rm :\longmapsto\:p(4\pi \:) =  {64\pi \:}^{2} -  {60\pi}^{2}  \:  - 4 {\pi}^{2}

\rm :\longmapsto\:p(4\pi \:) =  {64\pi \:}^{2} -  {64\pi}^{2}  \:

\rm :\longmapsto\:p(4\pi \:) =  0

Hence, Verified

Case :- 2

\red{ \boxed{ \sf{ \:z = \:  -  \: \frac{\pi}{4 \:} \:}}}

So, on substituting the value of z, in above polynomial, we get

\rm :\longmapsto\:p\bigg[ - \dfrac{\pi \:}{4} \bigg]= 4 {\bigg[ - \dfrac{\pi \:}{4} \bigg]}^{2}  + 15\bigg[\dfrac{\pi \:}{4} \bigg]\pi \:  - 4 {\pi}^{2}

\rm :\longmapsto\:p\bigg[ - \dfrac{\pi \:}{4} \bigg]= \dfrac{ {\pi \:}^{2} }{4}   + \dfrac{15 {\pi \:}^{2} }{4}   - 4 {\pi}^{2}

\rm :\longmapsto\:p\bigg[ - \dfrac{\pi \:}{4} \bigg]= \dfrac{ {16\pi \:}^{2} }{4}   - 4 {\pi}^{2}

\rm :\longmapsto\:p\bigg[ - \dfrac{\pi \:}{4} \bigg]=  {4\pi}^{2}   - 4 {\pi}^{2}

\rm :\longmapsto\:p\bigg[ - \dfrac{\pi \:}{4} \bigg]=  0

Hence, Verified

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: Hence, \: zeroes \: are-\begin{cases} &\sf{z = 4\pi \:} \\  \\ &\sf{z \:  =  -  \:  \dfrac{\pi \:}{4} } \end{cases}\end{gathered}\end{gathered}

Similar questions