Math, asked by anganabanerjee999, 9 months ago

Plz solve this problem of the chapter " LIMITS"​

Attachments:

Answers

Answered by BrainlyTornado
4

QUESTION 1:

 \displaystyle  \lim_{x \to 3}( {x}^{2}  +  \sqrt{3 - x} )

ANSWER 1:

9

EXPLANATION 1:

\displaystyle  \lim_{x \to 3}( {x}^{2}  +  \sqrt{3 - x} )\\ \\ \\{3}^{2}  +  \sqrt{3 - 3} \\ \\ \\ 9\\  \\ \\ \\{\large\bf{\displaystyle  \lim_{x \to 3}( {x}^{2}  +  \sqrt{3 - x} )  = 9}}

QUESTION 2:

 \displaystyle  \lim_{x \to 2}  \left(  \dfrac{1}{3  +  {e}^{ \dfrac{1}{x - 2} } } \right )

ANSWER 2:

0

FORMULA:

 \boxed{ \large{{{e}^{  \infty } } =\infty =  \frac{1}{0}  }}

 \boxed{ \large{  \dfrac{1}{\dfrac{1}{0}} = 0  }}

EXPLANATION 2:

\displaystyle  \lim_{x \to 2}  \left(  \dfrac{1}{3  +  {e}^{ \dfrac{1}{2- 2} } } \right) \\  \\  \\ \displaystyle  \lim_{x \to 2}  \left(  \dfrac{1}{3  +  {e}^{  \infty } } \right)  \\  \\  \\  \dfrac{1}{3 +  \dfrac{1}{0} }  \\  \\  \\ \dfrac{1}{ \dfrac{0 + 1}{0} }  \\  \\  \\ \dfrac{1}{ \dfrac{1}{0} }  \\  \\ \\ \bf{ \large{  \displaystyle  \lim_{x \to 2}  \left(  \dfrac{1}{3  +  {e}^{ \dfrac{1}{2- 2} } } \right) = 0  }}

Similar questions