Math, asked by Anonymous, 7 months ago

plz solve this problem of trigonometry​

Attachments:

Answers

Answered by Anonymous
31

Solution :

\bf L.H.S = \tt \dfrac{sec\: \theta + tan \:  \theta - 1}{tan \:  \theta - sec \:  \theta + 1}  \\  \\

:  \implies \tt \dfrac{\frac{1}{cos  \: \theta}  +  \frac{sin \:  \theta}{cos \: \theta}  - 1}{  \frac{sin \:  \theta}{cos \:  \theta} -  \frac{1}{cos \:  \theta} + 1   } \:  =   \dfrac{1 + sin \:  \theta - cos \:  \theta}{sin \: \theta + cos \:  \theta} \\  \\

: \implies \tt\dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta + (cos \:  \theta - 1)} \:  \times  \: \dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta  -  (cos \:  \theta - 1)} \\  \\

: \implies \tt\dfrac{ sin^{2}  \:  \theta  + cos^{2}  \:  \theta  + 1 - 2  \: cos \:  \theta  - 2  \: sin \:  \theta \: (cos \:  \theta - 1)}{sin^{2}  \: \theta  -  (cos \:  \theta - 1)^{2} } \\  \\

: \implies \tt\dfrac{1 + 1 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta - 1 + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta  - sin^{2} \:  \theta - cos^{2}   \:  \theta  + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 (1 - \:  cos \:  \theta )- 2 \: sin \:  \theta  (1 - \: cos \:  \theta)}{ 2 \: cos \: \theta - 2 \: cos^{2}   \:  \theta} \\  \\

: \implies \tt\dfrac{(2  +  2 \:  sin \:  \theta)  \:  \cancel{(1 -  cos\:  \theta)}}{2 \: cos \:  \theta  \:  \cancel{(1 - cos \:  \theta)}} \:  =  \:  \dfrac{1 + sin \:  \theta}{cos \: \theta}  \\  \\

: \implies\tt\dfrac{1 + sin \:  \theta}{cos \: \theta}  \:  \times  \: \dfrac{1  -  sin \:  \theta}{1 - sin \: \theta} \\  \\

:  \implies\tt\dfrac{1 + sin^{2}  \:  \theta}{cos \: (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos^{2}  \:  \theta}{cos \: \theta (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos \:  \theta}{1 - sin \: \theta}  \:  = \:  \bf{ R.H.S}\\  \\

\huge\bigstar  \:\underline{\red{\sf Hence, Proved}} \:  \bigstar \\

Answered by Cosmique
28

To prove :

\purple{\bigstar}\;\;\dfrac{sec\;\theta+tan\;\theta-1}{tan\;\theta-sec\;\theta+1}=\dfrac{cos\;\theta}{1-sin\;\theta}

Proof :

Taking LHS

\longrightarrow LHS = \dfrac{sec\;\theta+tan\;\theta-1}{tan\;\theta-sec\;\theta+1}

using trigonometric identity

sec²θ - tan²θ = 1

\longrightarrow LHS = \dfrac{sec\;\theta+tan\;\theta-(sec^2\theta-tan^2\theta)}{tan\;\theta-sec\;\theta+1}

Using algebraic identity

a² - b² = ( a + b ) ( a - b )

\longrightarrow LHS = \dfrac{sec\;\theta+tan\;\theta-(sec\;\theta-tan\;\theta)(sec\;\theta+tan\;\theta)}{tan\;\theta-sec\;\theta+1}

Taking sec θ + tan θ common in numerator

\longrightarrow LHS = \dfrac{(sec\;\theta+tan\;\theta)(1-(sec\;\theta-tan\;\theta))}{tan\;\theta-sec\;\theta+1}

\longrightarrow LHS = \dfrac{(sec\;\theta+tan\;\theta)(1-sec\;\theta+tan\;\theta)}{tan\;\theta-sec\;\theta+1}

\longrightarrow LHS = \dfrac{(sec\;\theta+tan\;\theta)(tan\;\theta-sec\;\theta+1)}{tan\;\theta-sec\;\theta+1}

\longrightarrow LHS = sec\;\theta + tan\;\theta

putting sec θ = 1 /cos θ and tan θ = sin θ / cos θ

\longrightarrow LHS = \dfrac{1}{cos\;\theta}+\dfrac{sin\;\theta}{cos\;\theta}

Taking LCM

\longrightarrow LHS = \dfrac{1+sin\;\theta}{cos\;\theta}

Multiplying by cos θ in numerator and denominator

\longrightarrow LHS = \dfrac{1+sin\;\theta}{cos\;\theta}\times \dfrac{cos\;\theta}{cos\;\theta}

\longrightarrow LHS = \dfrac{1+sin\;\theta(cos\;\theta)}{cos^2\theta}

Using trigonometric identity

1 - sin²θ = cos²θ

\longrightarrow LHS = \dfrac{1+sin\;\theta(cos\;\theta)}{1-sin^2\theta}

Using algebraic identity

a² - b² = ( a + b ) ( a - b )

\longrightarrow LHS = \dfrac{(1+sin\;\theta)(cos\;\theta)}{(1+sin\;\theta)(1-sin\;\theta)}

\longrightarrow LHS = \dfrac{cos\;\theta}{1-sin\;\theta} = RHS

PROVED .

Similar questions