Math, asked by kashyap76, 11 months ago

plz solve this Q?????????dont spam....​

Attachments:

Answers

Answered by vaishnavitiwari1041
2

Answer:

Here's Your Answer:-

 {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} ) \\  \\  = x( {x}^{2}  - xy +  {y}^{2} ) + y( {x}^{2}   +  {y}^{2}  - xy) \\  \\   = {x}^{3}  -  {x}^{2} y + x {y}^{2}  +  x {y}^{2}  +  {y}^{3}  - x {y}^{2}  \\  \\  =  {x}^{3}  +  {y}^{3}

➡ Hence Verified ✨

Answered by BhawnaAggarwalBT
2

Step-by-step explanation:

To solve it from LHS side

Let take (x+y)³ to solve this problem

(x + y {)}^{3} = (x + y)(x + y)(x + y) \\  \\ (x + y {)}^{3} = (x + y)( {x}^{2}  + 2xy +  {y}^{2} ) \\  \\ (x + y {)}^{3} =  {x}^{3}  + 2 {x}^{2} y + x {y}^{2}  +  {x}^{2} y + 2 {x}^{2} y +  {y}^{3}  \\  \\ (x + y {)}^{3} =  {x}^{3}  +  {y}^{3}  + 3 {x}^{2} y + 3 {xy}^{2}  \\  \\ (x + y {)}^{3} =  {x}^{3}  +  {y}^{3}  + 3xy(x + y) \\  \\ (x + y {)}^{3} - 3xy(x + y) =  {x}^{3}  +  {y}^{3}  \\  \\ (x + y)( {(x + y)}^{2}  - 3xy) =  {x}^{3}  +  {y}^{3}  \\  \\ (x + y)( {x}^{2}  +  {y}^{2}  + 2xy - 3xy) =  {x}^{3}  +  {y}^{3}  \\  \\  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  +  {y}^{2}   - xy)

Hence proved !

To solve it from RHS side

(x + y)³ = (x + y)(x² - xy + y²)

RHS

(x + y)(x² - xy + y²)

x(x² - xy + y²) + y(x² - xy + y²)

x³ - x²y + xy² + x²y - xy² + y³

x³ + y³

LHS = RHS

Hence proved !

Hope this will help you

Similar questions