Chemistry, asked by akgupta1774, 9 months ago

Plz Solve This ques​

Attachments:

Answers

Answered by ShivamKashyap08
4

Answer:

  • The 3/4th life of the reaction is 5.4 × 10² sec

Given:

  1. Rate constant (K) = 2.54 × 10⁻³ sec⁻¹

Explanation:

\rule{300}{1.5}

From the formula we know,

\bigstar\;\underline{\boxed{\sf t=\dfrac{2.303}{k}\;\log\Bigg[\dfrac{a}{a-x}\Bigg]}}

Here,

  • a Denotes initial concentration.
  • k Denotes rate constant.
  • x Denotes consumed reactants.

Now,

\bullet\qquad \textsf{For}\;\sf t=t_{3/4}\;,\;x=\dfrac{3\;a}{4}

Substituting the values,

\longrightarrow\sf t_{3/4}=\dfrac{2.303}{2.54\times 10^{-3}}\times \log\left[\dfrac{a}{a-\dfrac{3\;a}{4}}\right]\\\\\\\\\longrightarrow\sf t_{3/4}=\dfrac{2.303}{2.54\times 10^{-3}}\times \log\left[\dfrac{a}{\dfrac{4a-3a}{4}}\right]\\\\\\\\\longrightarrow\sf t_{3/4}=\dfrac{2.303}{2.54\times 10^{-3}}\times \log\left[\dfrac{a}{a/4}\right]\\\\\\\\\longrightarrow\sf t_{3/4}=\dfrac{2.303}{2.54\times 10^{-3}}\times \log\left[\dfrac{4}{1}\right]

\\

\longrightarrow\sf t_{3/4}=\dfrac{2.303\times 10^{3}}{2.54}\times \log(4)\\\\\\\\\longrightarrow\sf t_{3/4}=\dfrac{2.303\times 10^{3}}{2.54}\times 0.6\\\\\\\\\longrightarrow\sf t_{3/4}=\dfrac{1.38\times 10^{3}}{2.54}\\\\\\\\\longrightarrow\sf t_{3/4}=0.54\times 10^{3}\\\\\\\\\longrightarrow\sf t_{3/4}=5.4\times 10^{2}\\\\\\\\\longrightarrow \large{\underline{\boxed{\red{\sf  t_{3/4}=5.4\times 10^{2}\;sec}}}}

The 3/4th life of the reaction is 5.4 × 10² sec.

\rule{300}{1.5}

Answered by BrainlyBAKA
0

Explanation:

The 3/4th life of the reaction is 5.4 × 10² sec

HOPE this helps you ☺️

Similar questions