Math, asked by sunnyranak58, 10 months ago

plz solve this question​

Attachments:

Answers

Answered by Niveditha647
1

Answer:

given x =\frac{\sqrt{5} -2}{\sqrt{5}+2 } ,y=\frac{\sqrt{5} +2 }{\sqrt{5} -2}

To find x^{2} +y^{2} +xy

 =  ( \frac{\sqrt{5} -2}{\sqrt{5}+2 } ) ²+ ( \frac{\sqrt{5} +2 }{\sqrt{5} -2} )² +\frac{\sqrt{5} -2}{\sqrt{5}+2 } x \frac{\sqrt{5} +2 }{\sqrt{5} -2}

multiplying the conjugate

x  = ( \frac{\sqrt{5} -2}{\sqrt{5}+2 } × \frac{\sqrt{5} -2}{\sqrt{5} -2} \\\\  )

    =  ((√ 5 -2)²)/(√5² -2²)

    =  (5 - 2×2×√5 + 4 )/(5-4)

    =(9 -4√5 ) /1

    =9 -4√5

x² = (9 -4√5)²

   = 81- 8√5 +16×5

    = 81  - 8√5 + 80

    = 161 -8√5

y =( \frac{\sqrt{5} +2 }{\sqrt{5} -2} × \frac{\sqrt{5} + 2}{\sqrt{5} +2} )

 = (√5 + 2)²  / (√5² - 2²)

 =( 5 + 2×2√5 +4) /(5-4)

 = 9+4√5

y² = (9+4√5)²

   = 81 + 8√5 + 16×5

   = 161 +8√5

x×y = 1 since numerator and denominator cancels each other

Therefore   x²  +y² + x×y = 161 -8√5 + 161 +8√5 + 1

                                      = 161 +161 +1

                                      = 323 (Answer)


sunnyranak58: thanks
Similar questions