Plz Solve this question
Answers
Answer:
I tried my best but I can't solve it sorry
Answer: u can choose any one which is easier to u
Step-by-step explanation:
LHS = {cos(π+x).cos(-x)}/{sin(π-x).cos(π/2-x)}
we know,
cos(π+x) = -cosx
sin(π-x) = sinx
cos(-x) = cosx
cos(π/2 + x) = -sinx, use this above .
LHS = {(-cosx).cosx}/{sinx.(-sinx}
= cos²x/sin²x
= cot²x = RHS
OR
To prove : \frac{\cos(\pi +x)\csdot \cos(-x)}{\sin(\pi-x)\cdot \cos(\frac{\pi}{2}+x)}=(\cot(x))^2
Proof :
LHS=\frac{\cos(\pi +x)\csdot \cos(-x)}{\sin(\pi-x)\cdot \cos(\frac{\pi}{2}+x)}
Applying trigonometric properties,
\cos(\pi +x)=-\cos x
\sin(\pi-x)=\sin x
\cos(-x)=\cos x
\cos(\frac{\pi}{2}+x)=-\sin x
Substitute all the values in the expression,
LHS=\frac{-\cos x\csdot \cos x}{\sin x\cdot -\sin x}
LHS=\frac{-\cos^2 x}{-\sin^2 x}
LHS=(\frac{\cos x}{\sin x})^2
LHS=(\cot(x))^2
LHS=RHS
Hence proved