Physics, asked by jyoti0511, 9 months ago

PLZ SOLVE THIS QUESTION




Attachments:

Answers

Answered by Atαrαh
6

Given :

The electric current in a charging RC circuit is given by ,

\displaystyle \star  \mathtt   i= i •\:  {e}^{ -  \frac{t}{RC} }

To find :

The rate of change of current at

  • t = 0
  • t = RC
  • t = 10 RC

Note :

 \displaystyle \bigstar \boxed{ \pink{ \: \frac{d( {e}^{ax}) }{dx}  = a {e}^{ax} }}

Solution :

Differentiating current with respect to time we get ,

 \displaystyle  \rightarrow\mathtt{ \frac{di}{dt}  =  \frac{d(i •\:  {e}^{ -  \frac{t}{RC} } )}{dt} }

\displaystyle  \boxed {\: { \red{\mathtt{ \frac{di}{dt}  =  i•( \frac{ - 1}{RC} ){e}^{ -  \frac{t}{RC} } }}}}

At t = 0

\displaystyle \rightarrow{\mathtt{ \frac{di}{dt}  =  i•( \frac{ - 1}{RC} ) {e}^{0}   }}

\displaystyle \boxed{ \blue{\mathtt{ \frac{di}{dt}  =  \frac{ - i•}{RC} }}}

At t = R C

\displaystyle \rightarrow{\mathtt{ \frac{di}{dt}  =  i•( \frac{ - 1}{RC} ) {e}^{ \frac{ - R C}{R C} }   }}

\displaystyle \rightarrow{\mathtt{ \frac{di}{dt}  =  i•( \frac{ - 1}{RC} ) {e}^{ - 1}   }}

\displaystyle \boxed{ \blue{\mathtt{ \frac{di}{dt}  =  \frac{ - i•}{eRC} }}}

At t = 10 RC

\displaystyle \rightarrow{\mathtt{ \frac{di}{dt}  =  i•( \frac{ - 1}{RC} ) {e}^{ \frac{ - 10R C}{R C} }   }}

\displaystyle \rightarrow{\mathtt{ \frac{di}{dt}  =  i•( \frac{ - 1}{RC} ) {e}^{ - 10}   }}

\displaystyle \boxed{ \blue{\mathtt{ \frac{di}{dt}  =  \frac{ - i•}{10eRC} }}}

Similar questions