Math, asked by thankyou75, 9 months ago

Plz solve this question​

Attachments:

Answers

Answered by Anonymous
2

LHS =  \frac{1 -  \cos \theta }{1 + cos \theta}  \\   = &gt;  \frac{1 -  \cos \theta}{  1 + cos \theta}  \times  \frac{1 - cos \theta}{1 - cos \theta}  \\   =  \frac{ {(1 -cos \theta) }^{2} }{1 - {cos}^{2} \theta  } \\  =  &gt;  \frac{1 +  {cos \theta - 2cos \theta}^{2} }{ {sin}^{2} \theta } \\   = &gt; \frac{1}{ {sin}^{2}  \theta}  +  \frac{ {cos}^{2}  \theta}{ {sin}^{2}  \theta}  -  \frac{2cos \theta}{ {sin}^{2} \theta }  \\  =  &gt;  {cosec }^{2}  \theta +  {cot \: }^{2}  </h2><p>\theta - 2cosec \theta \: cot \theta \\  =  &gt;  {(cosec \theta - cot \theta)}^{2}  = RHS

&lt;font color ="green"&gt;☑verified answer

Similar questions