Math, asked by Pallakavya, 6 months ago

plz solve this question..​

Attachments:

Answers

Answered by pulakmath007
53

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

\displaystyle \sf{ \int\limits_{0}^{1}  \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \,  \frac{dx}{ \sqrt{1 +  {x}^{4} } } \:  \:   = \frac{\pi}{k \sqrt{2}  }    \: }

TO DETERMINE

The value of k

EVALUATION

Here

\displaystyle \sf{ \int\limits_{0}^{1}  \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \,  \frac{dx}{ \sqrt{1 +  {x}^{4} } } \:  \:   }    \:

 = \displaystyle \sf{ \int\limits_{0}^{1}  \frac{ \frac{1}{ {x}^{2} }  -  1 }{x +   \frac{1}{x}  }  \,  \frac{dx}{ \sqrt{ {x}^{2}  +   \frac{1}{ {x}^{2} } } } \:  \:   }    \:

 = \displaystyle \sf{ \int\limits_{0}^{1}  \frac{ \frac{1}{ {x}^{2} }  -  1 }{x +   \frac{1}{x}  }  \,  \frac{dx}{ \sqrt{( {x +   \frac{1}{x} )}^{2} - 2.x. \frac{1}{x}   } } \:  \:   }    \:

 = \displaystyle \sf{ \int\limits_{0}^{1}  \frac{ \frac{1}{ {x}^{2} }  -  1 }{x +   \frac{1}{x}  }  \,  \frac{dx}{ \sqrt{( {x +   \frac{1}{x} )}^{2} - 2   } } \:  \:   }    \:

 \displaystyle \sf{  x + \frac{1}{x}   =   \sqrt{2} \sec \theta}

Then

 \displaystyle \sf{1 -  \frac{1}{ {x}^{2} }  =  \sqrt{2}   \sec \theta \tan \theta }

\displaystyle \sf{  Also  \: when \:  \:  x = 0 \: ,  \theta =  \frac{\pi}{2} }

And

\displaystyle \sf{when \:  \:  x = 1 \: ,  \theta =  \frac{\pi}{4} }

So the given Integral

 = \displaystyle \sf{ \int\limits_{0}^{1}  \frac{ \frac{1}{ {x}^{2} }  -  1 }{x +   \frac{1}{x}  }  \,  \frac{dx}{ \sqrt{( {x +   \frac{1}{x} )}^{2} - 2   } } \:  \:   }    \:

 = \displaystyle \sf{ \int\limits_{ \frac{\pi}{2} }^{ \frac{\pi}{4} }  \frac{  - \sqrt{2}   \sec \theta \tan \theta }{\sqrt{2}   \sec \theta  }  \,  \frac{d \theta}{\sqrt{2}    \tan \theta  } \:  \:   }    \:

 = \displaystyle \sf{  -  \frac{1}{ \sqrt{2} } \int\limits_{ \frac{\pi}{2} }^{ \frac{\pi}{4} }    \,   d\theta  }    \:

 = \displaystyle \sf{  \frac{1}{ \sqrt{2} } \int\limits_{ \frac{\pi}{4} }^{ \frac{\pi}{2} }    \,   d\theta  }    \:

 = \displaystyle \sf{   \frac{\pi}{ 4\sqrt{2} } }    \:

Now it is given that

\displaystyle \sf{ \int\limits_{0}^{1}  \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \,  \frac{dx}{ \sqrt{1 +  {x}^{4} } } \:  \:   = \frac{\pi}{k \sqrt{2}  }    \: }

 \implies \: \displaystyle \sf{  \frac{\pi}{k \sqrt{2} }     =  \frac{\pi}{4 \sqrt{2} } \: }

Comparing we get

 \sf{ k = 4\: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If random variables has Poisson distribution such that p(2) =p(3), then p(5) =

https://brainly.in/question/23859240

Similar questions