Math, asked by singhamanpratap0249, 4 months ago

plz solve this question​

Attachments:

Answers

Answered by shinayu2276
5

Answer:

Given λ=10pm=100×10−12 m

D= 40 cm = 40 ×10−2 m

β=0.1mm=0.1×10−3 m

β=λDd

d =λDβ

= 100×10−12×40×10−210−3×0.1

= 4 ×10−7 m.

Thank you

Answered by ᎪɓhᎥⲊhҽᏦ
12

Answer:

In the given Question

Wavelength of the monochromatic beam

 \rm \lambda = 100 \: pm

 \rm \ \:  \:  \:  \:  = 100 \times  {10}^{ - 12}  \:m

Distance of the screen from the slit is given by

 \rm \: D = 40 \: cm

 \rm \:  \:  \:  \:  \:  \:  \: = 40 \times  {10}^{ - 2}  \:m

Distance between the successive Maxima

 \rm \:  \beta  = 0.1 \: mm

  \rm\:  \:  \:  \:  \:  \:  \:   = 0.1 \times  {10}^{ - 3} m

We have to find the Distance separation between 2 slits

d = ?

we know,

 \rm \beta  =  \dfrac{\lambda D}{d}

 \rm \: d =  \dfrac{\lambda D}{ \beta }

Now putting the values

 \rm \: d =  \dfrac{100 \times  {10}^{ - 12}  \times 40 \times  {10}^{ - 2} }{0.1 \times  {10}^{ - 3}  }

 \rm \: d =  \dfrac{ {10}^{2}  \times  {10}^{ - 12}  \times 4 \times  {10}^{1} \times  {10}^{ - 2} }{ {10}^{ - 1}  \times  {10}^{ - 3}  }

 \rm \: d =  \dfrac{4 \times  {10}^{3}  \times  {10}^{ - 14} }{ {}^{ }   {10}^{ - 4}  }

 \rm \: d =  {4 \times  {10}^{3}  \times  {10}^{ - 14} }{ {}^{ }  \times   {10}^{  4}  }

 \rm \: d =  {4 \times  {10}^{7}  \times  {10}^{ - 14} }{ {}^{ }   }

 \rm \: d =  {4 \times  {10}^{ - 7} }{ {}^{ }   } m

Hense, The distance between 2 slit is 4× 10^-7 m

Similar questions