Math, asked by yashvi205, 2 months ago

plz solve this question ​

Attachments:

Answers

Answered by tennetiraj86
3

Answer:

Given :-

Tan θ + Sin θ = a

Tan θ - Sin θ = β

To find :-

Show that a²-β² = 4√(aβ)

Solution :-

Given that :

Tan θ + Sin θ = a ------(1)

On squaring both sides then

=> (Tan θ + Sin θ)² = a²

=>Tan² θ + 2 Tan θ Sin θ + Sin² θ = a²--(2)

And

Tan θ - Sin θ = β ------(3)

On squaring both sides then

=> (Tan θ - Sin θ)² = β²

=>Tan² θ - 2 Tan θ Sin θ + Sin² θ =β²---(4)

On Subtracting (4) from (3)

=> (3)-(4)

=> (Tan² θ + 2 Tan θ Sin θ + Sin² θ) -

(Tan² θ - 2 Tan θ Sin θ + Sin² θ) = a²- β²

=>Tan² θ + 2 Tan θ Sin θ + Sin² θ -

Tan² θ + 2 Tan θ Sin θ - Sin² θ = a²- β²

=> 2 Tan θ Sin θ +2 Tan θ Sin θ = a²- β²

=>4 Tan θ Sin θ = a²- β² -----(5)

Now

a = Tan θ + Sin θ

β = Tan θ - Sin θ

a β = (Tan θ + Sin θ)(Tan θ - Sin θ)

=> a β = Tan² θ - Sin²θ

=> a β = ( Sin² θ/ Cos² θ) - Sin² θ

=> a β = Sin² θ[ (1/Cos² θ)-1]

=> a β = Sin² θ[(1- Cos² θ)/Cos² θ]

=> a β = Sin² θ × Sin² θ/ Cos² θ

=> a β = Sin² θ Tan² θ

=> a β = ( Sin θ Tan θ)²

=> Tan θ Sin θ = √(a β)-------(6)

On Substituting this value in (5)

From (5)&(6)

=> a²- β² = 4√(a β)

Hence, Proved.

Used formulae:-

Tan A = Sin A / Cos A

Sin² A + Cos² A = 1

(a+b)² = a²+2ab+b²

(a-b)² = a²-2ab+b²

Answered by rajalakshmimd85
0

Answer:

please answer my new question tennetiraj sir

Similar questions