plz solve this question
Attachments:
Answers
Answered by
1
Answer:
math]f(x)=\displaystyle\frac{x}{\sqrt{x^4+10x^2-96x-71}}[/math]
It has the following elementary antiderivative:
[math]F(x)=-{\frac {1}{8}}\ln \left((x^{6}+15x^{4}-80x^{3}+27x^{2}-528x+781){\sqrt {x^{4}+10x^{2}-96x-71}}-(x^{8}+20x^{6}-128x^{5}+54x^{4}-1408x^{3}+3124x^{2}+10001)\right) [/math]
but the integral of the similar function (where [math]71[/math] is replaced by [math]72[/math])
[math]g(x)=\displaystyle\frac{x}{\sqrt{x^4+10x^2-96x-72}}[/math]
Answered by
1
Answer:
(a+b) (a+b+2c)
Step-by-step explanation:
A2+B2+2ab+2bc+2ca
using the identity A2+B2+2ab=(a+b)2
we get,
=(a+b)2+2bc+2ca
=(a+b)2+2c(a+b)
(or)
(a+b)2+2c(b+a)
taking (a+b) common
= (a+b) (a+b+2c)
therefore, a2+b2+2(ab+bc+ca) = (a+b) (a+b+2c)
Similar questions