plz solve this question
Attachments:
Answers
Answered by
0
Since you have the 42-deg angle and the length of the opposite side, 31, you can use the Law of Sines.
\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C}sinAa=sinBb=sinCc
We will use the law of sines first to find x.
Once we know x, we can find the angle opposite y.
Then we can find y.
\dfrac{31}{\sin 42^\circ} = \dfrac{37}{\sin x}sin42∘31=sinx37
\sin x = \dfrac{37\sin 42^\circ}{31}sinx=3137sin42∘
\sin x = 0.798639sinx=0.798639
x = \sin^{-1} 0.798639 = 53^\circx=sin−10.798639=53∘
Let z = the angle opposite y.
z + 42 + 53 = 180
z = 85
\dfrac{31}{\sin 42^\circ} = \dfrac{y}{\sin 85^\circ}sin42∘31=sin85∘y
y = \dfrac{31 \sin 85^\circ}{\sin 42^\circ}y=sin42∘31sin85∘
y = 46.2y=46.2
\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C}sinAa=sinBb=sinCc
We will use the law of sines first to find x.
Once we know x, we can find the angle opposite y.
Then we can find y.
\dfrac{31}{\sin 42^\circ} = \dfrac{37}{\sin x}sin42∘31=sinx37
\sin x = \dfrac{37\sin 42^\circ}{31}sinx=3137sin42∘
\sin x = 0.798639sinx=0.798639
x = \sin^{-1} 0.798639 = 53^\circx=sin−10.798639=53∘
Let z = the angle opposite y.
z + 42 + 53 = 180
z = 85
\dfrac{31}{\sin 42^\circ} = \dfrac{y}{\sin 85^\circ}sin42∘31=sin85∘y
y = \dfrac{31 \sin 85^\circ}{\sin 42^\circ}y=sin42∘31sin85∘
y = 46.2y=46.2
Similar questions