Math, asked by bhavanabangs88, 22 hours ago

plz solve this question and answer it here . don't try to take the points just by telling hello or don't tell that the question is proper or not . I will report u guys ​

Attachments:

Answers

Answered by mathdude500
28

Given Question :- Prove that

\rm \:  {2sec}^{2}\theta  -  {sec}^{4}\theta  -  {2cosec}^{2}\theta  +  {cosec}^{4}\theta  =  {cot}^{4}\theta -  {tan}^{4}\theta \\

\large\underline{\sf{Solution-}}

Consider RHS

\rm \:  {cosec}^{4}\theta  -  {cot}^{4}\theta  \\

\rm \:  =  \:  {( {cot}^{2} \theta )}^{2}  -  {( {tan}^{2} \theta )}^{2}  \\

We know,

\boxed{ \rm{ \: {cosec}^{2}x -  {cot}^{2}x = 1 \: }} \\  \\ \rm \: and \\  \\ \boxed{ \rm{ \: {sec}^{2}x -  {tan}^{2}x = 1 \: }} \\

So, using these identities, we get

\rm \:  =  \:  {( {cosec}^{2}\theta  - 1)}^{2} -  {( {sec}^{2} \theta  - 1)}^{2}  \\

We know,

\boxed{ \rm{ \: {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy \: }} \\

So, using this identity, we get

\rm \:  =  \:  {cosec}^{4}\theta + 1 -  {2cosec}^{2}\theta  - ( {sec}^{4}\theta  + 1 - 2 {sec}^{2}\theta ) \\

\rm \:  =  \:  {cosec}^{4}\theta + 1 -  {2cosec}^{2}\theta  - {sec}^{4}\theta -  1  + 2 {sec}^{2}\theta \\

\rm \:  =  \:  {cosec}^{4}\theta -  {2cosec}^{2}\theta  - {sec}^{4}\theta+ 2 {sec}^{2}\theta \\

can be re-arranged as

\rm \:  =  \:  {2sec}^{2}\theta  -  {sec}^{4}\theta  -  {2cosec}^{2}\theta  +  {cosec}^{4}\theta  \\

Hence,

\boxed{ \rm{ \:{2sec}^{2}\theta- {sec}^{4}\theta -  {2cosec}^{2}\theta+{cosec}^{4}\theta= {cot}^{4}\theta- {tan}^{4}\theta \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by Rina86169
17

Answer:

Given Question :- Prove that

\rm \:  {2sec}^{2}\theta  -  {sec}^{4}\theta  -  {2cosec}^{2}\theta  +  {cosec}^{4}\theta  =  {cot}^{4}\theta -  {tan}^{4}\theta \\

\large\underline{\sf{Solution-}}

Consider RHS

\rm \:  {cosec}^{4}\theta  -  {cot}^{4}\theta  \\

\rm \:  =  \:  {( {cot}^{2} \theta )}^{2}  -  {( {tan}^{2} \theta )}^{2}  \\

We know,

\boxed{ \rm{ \: {cosec}^{2}x -  {cot}^{2}x = 1 \: }} \\  \\ \rm \: and \\  \\ \boxed{ \rm{ \: {sec}^{2}x -  {tan}^{2}x = 1 \: }} \\

So, using these identities, we get

\rm \:  =  \:  {( {cosec}^{2}\theta  - 1)}^{2} -  {( {sec}^{2} \theta  - 1)}^{2}  \\

We know,

\boxed{ \rm{ \: {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy \: }} \\

So, using this identity, we get

\rm \:  =  \:  {cosec}^{4}\theta + 1 -  {2cosec}^{2}\theta  - ( {sec}^{4}\theta  + 1 - 2 {sec}^{2}\theta ) \\

\rm \:  =  \:  {cosec}^{4}\theta + 1 -  {2cosec}^{2}\theta  - {sec}^{4}\theta -  1  + 2 {sec}^{2}\theta \\

\rm \:  =  \:  {cosec}^{4}\theta -  {2cosec}^{2}\theta  - {sec}^{4}\theta+ 2 {sec}^{2}\theta \\

can be re-arranged as

\rm \:  =  \:  {2sec}^{2}\theta  -  {sec}^{4}\theta  -  {2cosec}^{2}\theta  +  {cosec}^{4}\theta  \\

Hence,

\boxed{ \rm{ \:{2sec}^{2}\theta- {sec}^{4}\theta -  {2cosec}^{2}\theta+{cosec}^{4}\theta= {cot}^{4}\theta- {tan}^{4}\theta \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions