Math, asked by ArunSharma7, 7 months ago

plz solve this question don't scam ​

Attachments:

Answers

Answered by InfiniteSoul
12

\sf{\red{\huge{\boxed{\bold{Solution}}}}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{ 2^{3x-5}\times a^{x-2} = 2^{x-2} \times a^{1+x } }}

⠀⠀⠀⠀

  • If a x b = c ; a = \sf{\bold{\dfrac{c}{b}}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{ \dfrac{ a^{x-2}}{ a^{1-x}} = \dfrac{2^{x-2}}{2^{3x-5}}}}

⠀⠀⠀⠀

  • If bases are equal then in division powers will subtract

⠀⠀⠀⠀⠀⠀⠀

: \sf\implies\: {\bold{ a^{x-2-1 + x} = 2^{x-2-3x+5} }}

⠀⠀⠀⠀

: \sf\implies\: {\bold{ a^{2x- 3} = 2^{-2x+3} }}

⠀⠀⠀⠀

  • Taking " - " minus as common .

⠀⠀⠀⠀⠀⠀⠀

: \sf\implies\: {\bold{ a^{2x-3} = 2^{-(2x-3)} }}

⠀⠀⠀⠀

  • \sf{\bold{ a^{-1} = \dfrac{1}{a}}}

⠀⠀⠀⠀⠀⠀⠀⠀

: \sf\implies\: {\bold{ a^{2x-3} = ( \dfrac{1}{2})^{2x-3} }}

⠀⠀

  • If powers are equal with equal's too sign then bases will also be equal

⠀⠀⠀⠀⠀⠀

: \sf\implies\: {\bold{ a = \dfrac{1}{2} }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{a = \dfrac{1}{2}}}}}

Similar questions