Math, asked by tanishkaTanu, 9 months ago

plz solve this question fastttt... ​

Attachments:

Answers

Answered by abhi52329
0

Step-by-step explanation:

1) Given

x +  \frac{1}{x}  = 5

squaring both sides we get

 {(x +  \frac{1}{x} })^{2}  = 25

 {x}^{2}   +   \frac{1}{ {x}^{2} }  + 2 = 25

 {x}^{2}   + \frac{1}{ {x}^{2} }  = 23

squaring again, we get

 {x}^{4}  +   \frac{1}{ {x}^{4} }  + 2 = 529

It implies that

 {x}^{4}  +  \frac{1}{ {x}^{4} }  = 527

Ans 2) Given

 \frac{(1.98 \times 1.98 - 1.02 \times 1.02)}{0.96}

Now

1.98 = 2 - 0.02

1.02 = 1 + 0.02

0.96 = 1 - 2 \times 0.02

It implies that given expression is

  \frac{ {(2 - 0.02)}^{2}  -  {(1 + 0.02)}^{2} }{(1 - 2 \times 0.02)}

for simplification let us assume 0.02=x, therefore given expression becomes

 \frac{ {(2 - x)}^{2}  -  {(1 + x)}^{2} }{(1 - 2x)}

using

 {x}^{2}  -  {y}^{2}  = (x - y) \times (x + y) \: in \: the \: numerator

 =  \frac{(2 - x - 1 - x {) \times (2 - x + 1 + x}) }{( 1- 2x)}

 \frac{(1 - 2x) \times (3)}{1 - 2x)}

 = 3 \:  \:

Ans 3

 {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}  - xy

Given

x + y = 10

xy = 21

Therefore

 {x}^{2}   + {y}^{2}  =  {(10)}^{2}  - 21

 {x}^{2}  +  {y}^{2}  = 100 - 21

 {x}^{2}  +  {y}^{2}  = 79 \: (answer)

Ans 4)

No of spades= 13

Therefore Probability of a spade is

 \frac{13}{52}  =  \frac{1}{4}

No of Ace spades =1

Therefore Probability of an ace spade is

 \frac{1}{52}

Similar questions