Math, asked by Gunjan84Jain, 10 months ago

Plz Solve this Question From Equation Chapter..Plz Help​

Attachments:

Answers

Answered by anu24239
7

\huge\mathfrak\red{Answer}

 let \\ 4 +  \frac{1}{4 +  \frac{1}{4 +  \frac{1}{4 +  \frac{1}{.......infinite} } } }  = x.....(1) \\  \\ x = 4 +  \frac{1}{x}  \\ as \: you \: see \: the \: whole \: equation \\ in \: denominator \: is \: similiar \: to \:  \\ what \: we \: assume \\  x = 4 +  \frac{1}{x}  \\  {x}^{2}  =  {4x + 1} \\  \\ solve \: for \: x \\  \\  {x}^{2}  - 4x - 1 = 0 \\  \\ a = 1 \\ b =  - 4 \\ c =  - 1 \\ by \: using \: quadratic \: formula \\  \\ x =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a} \:  or \:  \frac{ - b -  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\ x =  \frac{4 +  \sqrt{16 - 4(1)( - 1)} }{2(1)}  \\  \\ x =  \frac{4 +  \sqrt{16 + 4} }{2}  \\  \\ x =  \frac{4 +  \sqrt{20} }{2}  \\  \\ x =  \frac{4 + 2 \sqrt{5} }{2}  \\  \\ x =2 + 2 \sqrt{5}  \: or \: 2 - 2 \sqrt{5}  \\  \\ so \: from \: eq(1) \\  \\ 4 +  \frac{1}{4 +  \frac{1}{4 +  \frac{1}{4 +  \frac{1}{ ......infinite} } } }  = x = 2 + 2  \sqrt{5}  \: or \: 2 - 2 \sqrt{5}

OPTION C

Similar questions