Math, asked by Wanshsingh12115, 9 months ago

plz solve this question I need it​

Attachments:

Answers

Answered by saounksh
1

ᴀɴsᴡᴇʀ

  • \boxed{\bf{ \lim \limits_{x \to 0}\frac{8}{x^8}\left[1-cos\frac{x^2}{2}-cos\frac{x^2}{4}+cos\frac{x^2}{2}cos\frac{x^2}{4}\right] = \frac{1}{32}}}

ғᴏʀᴍᴜʟᴀ

  •  \lim \limits_{x \to 0} \frac{1-cos(x)}{x^2} = \frac{1}{2}

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

The given limit can be simplified as

❥︎  \lim \limits_{x \to 0}\frac{8}{x^8}\left[1-cos\frac{x^2}{2}-cos\frac{x^2}{4}+cos\frac{x^2}{2}cos\frac{x^2}{4}\right]

❥︎  \lim \limits_{x \to 0}\frac{8}{x^8}\left[\left(1-cos\frac{x^2}{2}\right)-cos\frac{x^2}{4}\left(1-cos\frac{x^2}{2}\right)\right]

❥︎  \lim \limits_{x \to 0}\frac{8}{x^8} \left(1-cos\frac{x^2}{2}\right)\left(1-cos\frac{x^2}{4}\right)

❥︎  8\lim \limits_{x \to 0} \frac{1-cos\frac{x^2}{2}}{x^4}\frac{1-cos\frac{x^2}{4}}{x^4}

❥︎  8\lim \limits_{x \to 0} \frac{1-cos\frac{x^2}{2}}{2^2\left(\frac{x^2}{2}\right)^2}\frac{1-cos\frac{x^2}{4}}{4^2\left(\frac{x^2}{4}\right)^2}

❥︎  \frac{8}{4. 16}\lim \limits_{\frac{x^2}{2} \to 0} \frac{1-cos\frac{x^2}{2}}{\left(\frac{x^2}{2}\right)^2}\lim \limits_{\frac{x^2}{4} \to 0} \frac{1-cos\frac{x^2}{4}}{\left(\frac{x^2}{4}\right)^2}

❥︎  \frac{8}{4.16}\lim \limits_{y \to 0} \frac{1-cos(y)}{y^2}\lim \limits_{z \to 0} \frac{1-cos(z)}{z^2}

❥︎  \frac{1}{8}.\frac{1}{2}.\frac{1}{2}

❥︎  \frac{1}{32}

Similar questions