Math, asked by jainumang21, 9 months ago

Plz solve this question
It's urgent.​

Attachments:

Answers

Answered by Rohit18Bhadauria
17

Given

α and β are the zeroes of the polynomial 2x²+5x-9

To Find:

  • Value of α²-β²

Solution

Let x be the zero of given polynomial, then

\longrightarrow\sf{p(x)= 2x^{2} +5x-9=0}

On taking 2 common from the polynomial, we get

\longrightarrow\sf{2\bigg(x^{2} +\dfrac{5}{2}x-\dfrac{9}{2}\bigg) =0}

\longrightarrow\sf{x^{2} -\Big(-\dfrac{5}{2}\Big)x+\Big(-\dfrac{9}{2}\Big)=0}

Now, we know that general quadratic equation is expressed as

x² -(Sum of Zeroes)x+(Product of Zeroes)=0

So, on comparing our equation with general equation we get,

\sf{Sum\:of\:Zeroes=\alpha+\beta=-\dfrac{5}{2}}

\sf{Product\:of\:Zeroes=\alpha\beta=-\dfrac{9}{2}}

Also, we know that

  • \sf{a^{2} +b^{2} =(a+b)^{2}-2ab}
  • \sf{(a^{2}-b^{2})^{2}=(a^{2}+b^{2})^{2}-(2ab)^{2}}

So,

\sf{\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2\alpha\beta}

\sf{\alpha^{2}+\beta^{2}=\bigg(-\dfrac{5}{2}\bigg)^{2}-2\bigg(-\dfrac{9}{2}\bigg)}

\sf{\alpha^{2}+\beta^{2}=\dfrac{25}{4}+9}

\sf{\alpha^{2}+\beta^{2}=\dfrac{61}{4}}

Now,

\sf{(\alpha ^{2}-\beta ^{2})^{2}=(\alpha ^{2}+\beta ^{2})^{2}-(2\alpha\beta )^{2}}

\sf{(\alpha ^{2}-\beta ^{2})^{2}=\bigg(\dfrac{61}{4}\bigg)^{2}-\bigg(2\times\dfrac{-9}{2} \bigg)^{2}}

\sf{(\alpha ^{2}-\beta ^{2})^{2}=\dfrac{3721}{16}-81}

\sf{(\alpha ^{2}-\beta ^{2})^{2}=\dfrac{2425}{16}}

\sf{\alpha ^{2}-\beta ^{2}=\sqrt{\dfrac{2425}{16}}}

\sf{\alpha ^{2}-\beta ^{2}=\pm\dfrac{\sqrt{2425}}{4}}

I think your question requires correction because the answer does not match with given options.

Answered by Anonymous
5

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ QuEstiOn ❚

If \alpha and \beta are the Zeroes of the quadratic equation 2x²+5x-9 , then find the value of , (\alpha^2-\beta^2)=?

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ ANsWeR ❚

✺ Explanation :

\implies 2x^2+5x-9=0

\implies \dfrac{2x^2+5x-9}{2}=\dfrac{0}{2}

\implies \dfrac{2x^2}{2}+\dfrac{5x}{2}-\dfrac{9}{2}=\dfrac{0}{2}

\implies x^2+\dfrac{5}{2}x-\dfrac{9}{2}=0

Comparing the equation  x^2+\dfrac{5}{2}x-\dfrac{9}{2}=0 with the equation ,  x^2-(\alpha+\beta)x+\alpha\beta=0 we get ,

(\alpha+\beta)=-\dfrac{5}{2}

(\alpha\beta)=-\dfrac{9}{2}

!!✺ We have to Find :-

(\alpha^2-\beta^2)=?

✺ Therefore :

\implies(\alpha^2-\beta^2)

\implies(\alpha-\beta)(\alpha+\beta)

\implies\sqrt{[(\alpha+\beta)^2-4\alpha\beta]}(\alpha+\beta)

\implies\sqrt{[(-\dfrac{5}{2})^2-\cancel4(-\dfrac{9}{\cancel2})]}(-\dfrac{5}{2})

\implies\sqrt{[\dfrac{25}{4}+18]}(-\dfrac{5}{2})

\implies\sqrt{[\dfrac{25+72}{4}]}(-\dfrac{5}{2})

\implies\dfrac{-5\sqrt{97}}{2\times2}

\implies\dfrac{-5\sqrt{97}}{4}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions