Math, asked by uditsharma31, 9 months ago

Plz solve this quickly​

Attachments:

Answers

Answered by Asterinn
3

Given :-

 \rm  y =  {e}^{ {tan}^{ - 1} x}

To prove :-

 \rm(1 +  {x}^{2} ) \dfrac{ {d}^{2} y}{d {x}^{2} }  + (2x - 1)\dfrac{ {d} y}{d {x} }  = 0

Proof :-

 \rm \implies y =  {e}^{ {tan}^{ - 1} x}

Now , first we will find dy/dx

\rm \implies  \dfrac{dy}{dx} = \dfrac{d({e}^{ {tan}^{ - 1} x})}{dx}

We know that :-

=> d(e^x)/dx = e^x

=> d( tan^(-1)x )/dx = 1/( 1+x²)

\rm \implies  \dfrac{dy}{dx} = {e}^{ {tan}^{ - 1} x} \times \dfrac{d({tan}^{ - 1} x)}{dx}

\rm \implies  \dfrac{dy}{dx} = {e}^{ {tan}^{ - 1} x} \times  \dfrac{1}{1 +  {x}^{2} }

\rm \implies  \dfrac{dy}{dx} =  \dfrac{{e}^{ {tan}^{ - 1} x}}{1 +  {x}^{2} } .......(1)

Now , multiply (2x-1) in LHS and RHS of equation (1)

\rm \implies (2x -  1) \dfrac{dy}{dx} = (2x -  1) \dfrac{{e}^{ {tan}^{ - 1} x}}{1 +  {x}^{2} } .......(2)

Now we will find out d²y/dx² using quotient rule of differentiation.

\rm \implies  \dfrac{ {d}^{2} y}{d {x}^{2} } =   \dfrac{d \bigg(\dfrac{{e}^{ {tan}^{ - 1} x}}{1 +  {x}^{2} } \bigg )}{d}

\rm \implies  \dfrac{ {d}^{2} y}{d {x}^{2} } =    \dfrac{{e}^{ {tan}^{ - 1} x} \times  \frac{1}{(1 +  {x}^{2} ) } \times  { ( {x}^{2} + 1)} - 2x \: {e}^{ {tan}^{ - 1} x}}{ {(1 +  {x}^{2} )}^{2} }

\rm \implies  \dfrac{ {d}^{2} y}{d {x}^{2} } =    \dfrac{{e}^{ {tan}^{ - 1} x}(1 - 2x)}{ {(1 +  {x}^{2} )}^{2} }

Now multiply (1+x²) :-

\rm \implies{(1 +  {x}^{2} )} \times   \dfrac{ {d}^{2} y}{d {x}^{2} } =    \dfrac{{e}^{ {tan}^{ - 1} x}(1 - 2x)}{ {(1 +  {x}^{2} )}^{2} }  \times {(1 +  {x}^{2} )}

\rm \implies{(1 +  {x}^{2} )}  \dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \:    \dfrac{( 2x - 1){e}^{ {tan}^{ - 1} x}}{ {(1 +  {x}^{2} )} }  .......(3)

Now add ( 2) and (3) :-

\rm \implies{(1 +  {x}^{2} )}  \dfrac{ {d}^{2} y}{d {x}^{2} }  +  (2x -  1) \dfrac{dy}{dx}  =  (2x -  1) \dfrac{{e}^{ {tan}^{ - 1} x}}{1 +  {x}^{2} } -   \dfrac{( 2x - 1){e}^{ {tan}^{ - 1} x}}{ {(1 +  {x}^{2} )} }

\rm \implies{(1 +  {x}^{2} )}  \dfrac{ {d}^{2} y}{d {x}^{2} }  +  (2x -  1) \dfrac{dy}{dx}  =  (2x -  1) \dfrac{{e}^{ {tan}^{ - 1} x}}{1 +  {x}^{2} } -   \dfrac{( 2x - 1){e}^{ {tan}^{ - 1} x}}{ {(1 +  {x}^{2} )} } = 0

Hence proved

Similar questions