Math, asked by harshitagoel21p3sc8u, 1 year ago

plz solve this sum...​

Attachments:

Answers

Answered by atulrajcool
1

take x common in numerator

HOPE IT HELPS

PLEASE MARK BRAINLIST.

Attachments:
Answered by Grimmjow
13

\mathsf{Given :\;y = f(x) = \dfrac{ax - b}{bx - a}}

In order to find f(y), We need to replace x with y

\mathsf{\implies f(y) = \dfrac{ay - b}{by - a}}

\mathsf{But,\;y = \dfrac{ax - b}{bx - a}}

Substituting the value of y in f(y), We get :

\mathsf{\implies f(y) = \dfrac{a\bigg(\dfrac{ax - b}{bx - a}\bigg) - b}{b\bigg(\dfrac{ax - b}{bx - a}\bigg) - a}}

\mathsf{\implies f(y) = \dfrac{\dfrac{a(ax - b)}{bx - a} - b}{\dfrac{b(ax - b)}{bx - a} - a}}

\mathsf{\implies f(y) = \dfrac{\dfrac{a(ax - b) - b(bx - a)}{bx - a}}{\dfrac{b(ax - b) - a(bx - a)}{bx - a}}}

\mathsf{\implies f(y) = \dfrac{a(ax - b) - b(bx - a)}{b(ax - b) - a(bx - a)}}

\mathsf{\implies f(y) = \dfrac{a^2x - ab - b^2x + ab}{abx - b^2 - abx + a^2}}

\mathsf{\implies f(y) = \dfrac{a^2x - b^2x}{a^2 - b^2}}

\mathsf{\implies f(y) = \dfrac{x(a^2 - b^2)}{a^2 - b^2}}

\mathsf{\implies f(y) = x}

Similar questions