Math, asked by dewangSINGLA, 1 year ago

plz solve........to be brainlist​

Attachments:

Answers

Answered by Swarup1998
85

Solution :

Now, \mathrm{\frac{2^{n+3}-2(2^{n})}{2^{2n+2}}}

\mathrm{=\frac{2^{3}(2^{n})-2(2^{n})}{2^{2n}\times 2^{2}}}

\mathrm{=\frac{(8-2)2^{n}}{4(2^{2n})}}

\mathrm{=\frac{6\times 2^{n}}{4\times 2^{2n}}}

\mathrm{=\frac{6}{4}\times \frac{2^{n}}{2^{2n}}}

\mathrm{=\frac{3}{2}\times 2^{n-2n}}

\mathrm{=\frac{3}{2}\times 2^{-n}}

\mathrm{=3\times 2^{-n-1}}

\to \boxed{\mathrm{\frac{2^{n+3}-2(2^{n})}{2^{2n+2}}=3\times 2^{-n-1}}}

Laws of Indices :

\mathrm{1.\:a^{m}\times a^{n}=a^{m+n}}

\mathrm{2.\:a^{-m}=\frac{1}{a^{m}}}

\mathrm{3.\:(a^{m})^{n}=a^{mn}}

\mathrm{4.\:\sqrt[n]{a^{m}}=a^{\frac{m}{n}}}


dewangSINGLA: good
dewangSINGLA: you have given right answer
Swarup1998: : )
Answered by RealPoet
25
Answer :

\frak{\huge{ \bf{3 \times {2}^{ - n - 1} }}}

Step By Step Explanation:

 \sf{\frac{ {2}^{n \: + \: 3} \: - \: 2 ({2}^{n}) }{ {2}^{2n \: + \: 2} } }

 \sf{ \implies \frac{ {2}^{3}(2n ) \: - \:2(2n) }{ {2}^{2n \: + \: 2} } }

 \sf{ \implies \frac{(8 \: - \: 2) {2}^{n} }{4( {2}^{2n})}}

 \sf{ \implies \frac{6 \: \times \: {2}^{n} }{4 \: \times \: {2}^{2n} } }

 \sf{ \implies \frac{ \cancel6}{ \cancel4} \times \frac{ {2}^{n} }{ {2}^{2n} } }

 \sf{ \implies \frac{3}{2} \times {2}^{n \: - \: 2n} }

 \sf{ \implies \frac{3}{2} \times {2}^{ - n} }

 \sf{ \implies 3 \times {2}^{ - n - 1} }

Laws of Indices :

 \sf{1. \: {a}^{m} \times {a}^{n} = {a}^{m \: + \: n} }

 \sf{ 2. \: {a}^{m} \: \div \: {a}^{n} } = {a}^{m \: - \: n} \: when \: m > n \\ \: \: \: \: \sf{ {a}^{m} \: \div \: {a}^{n} = \frac{1}{ {a}^{n \: - \: m} } \: when \:m < n}

 \sf{3. \:( {a}^{m} )^{n}} = {a}^{m \: \times \: n} ,<br />(ab)^{m} = {a}^{m} {b}^{m} <br />

 \sf{ 4. \: {a}^{ - m } = \frac{1}{ {a}^{m}},<br />\: {a}^{m} = \frac{1}{ {a}^{ - m} } }

 \sf{5. \: a \degree = 1}

 \sf{ 6. \: \sqrt[n]{ {a}^{m} } = {a}^{ \frac{m}{n} } }
Similar questions