Math, asked by yashrock25, 11 months ago

plz solve what is in the photo ​

Attachments:

Answers

Answered by Anonymous
39

Explanation :

Refer to the attachment

Some important identities :

★ CosecØ = 1/SinØ

★ CotØ = CosØ/SinØ

★ TanØ = 1/CotØ

★ Sin²Ø + Cos²Ø = 1

★ Sec²Ø - Tan²Ø = 1

★ Cosec²Ø - Cot²Ø = 1

★ SinØ = Cos(90 - Ø)

★ CosØ = Sin(90 - Ø)

★ TanØ = Cot(90 - Ø)

★ CotØ = Tan(90 - Ø)

★ CosecØ = Sec(90 - Ø)

★ SecØ = Cosec(90 - Ø)

Attachments:
Answered by Anonymous
43

Question:

to prove :

 \frac{cot(x) \times  \cos(x) }{1 +  \sin(x) }  =  \csc(x)  - 1

Answer :

LHS =

 \frac{ \cot(x)   \times cos(x) }{1 +  \sin(x) }

  = \frac{ \frac{ \cos(x) }{ \sin(x) } \times  \cos(x)  }{1 +  \sin(x) }

 =  \frac{  \frac{ \cos {}^{2} ( x ) }{ \sin(x) }  }{1 +  \sin(x) }

 =  \frac{ \cos {}^{2} (x) }{(1 +  \sin(x)) \sin(x)  }

use the forumla : cos²x = 1-sin²x

 =  \frac{1 -  \sin {}^{2} (x) }{(1 +  \sin(x))  \sin(x) }

we know that

a² -b² = (a+b) (a-b)

then ;

 =  \frac{(1 +  \sin(x)) (1 -  \sin(x)) }{(1 +  \sin(x)) \sin(x)  }

 =  \frac{1 -  \sin(x) }{ \sin(x) }

 =  \csc(x)  - 1

= RHS

•Hence ; proved

hope it helps you ! ☺️

Similar questions