Math, asked by supsanjoshi, 3 months ago

plz solve without using l hopital law

plz don't spammmmm ​

Attachments:

Answers

Answered by BrainlyPopularman
17

GIVEN :

• A limit –

 \\ \implies\bf  \lim_{x \to0} \dfrac{ log(2 + x) -  log(2) }{ \sqrt{1 + x} - 1} \\

TO FIND :

• Value of limit = ?

SOLUTION :

• Let –

 \\ \implies\bf  P = \lim_{x \to0} \dfrac{ log(2 + x) -  log(2) }{ \sqrt{1 + x} - 1} \\

• Now rationalization –

 \\ \implies\bf  P = \lim_{x \to0} \dfrac{ log(2 + x) -  log(2) }{ \sqrt{1 + x} - 1} \times  \dfrac{ \sqrt{1 + x}  +  1 }{\sqrt{1 + x}  +  1}  \\

 \\ \implies\bf  P = \lim_{x \to0} \dfrac{ log(2 + x) -  log(2) }{ (\sqrt{1 + x} - 1)(\sqrt{1 + x}+1)} \times (\sqrt{1 + x}+1)\\

 \\ \implies\bf  P = \lim_{x \to0} \dfrac{ log(2 + x) -  log(2) }{ (\sqrt{1 + x} )^{2} - (1)^{2}} \times (\sqrt{1 + x}+1)\\

 \\ \implies\bf  P = \lim_{x \to0} \dfrac{ log(2 + x) -  log(2) }{ (1 + x - 1)} \times (\sqrt{1 + x}+1)\\

 \\ \implies\bf  P = \lim_{x \to0} \dfrac{ log(2 + x) -  log(2) }{x} \times (\sqrt{1 + x}+1)\\

• Now Using L'HOSPITAL rule –

 \\ \implies\bf  P = \lim_{x \to0} \bigg[ \dfrac{ \bigg(\dfrac{1}{2 + x} \bigg) \times(\sqrt{1 + x}+1) +[log(2 + x) -  log(2)] \bigg[ \dfrac{1}{2 \sqrt{1 + x}  } \bigg]}{1} \bigg]\\

• Put limit –

 \\ \implies\bf  P = \bigg[ \dfrac{ \bigg(\dfrac{1}{2 + 0} \bigg) \times(\sqrt{1 + 0}+1) +[log(2 + 0) -  log(2)] \bigg[ \dfrac{1}{2 \sqrt{1 + 0}  } \bigg]}{1} \bigg]\\

 \\ \implies\bf  P = \bigg[ \dfrac{ \bigg(\dfrac{1}{2} \bigg) \times(\sqrt{1}+1) +[log(2) -  log(2)] \bigg[ \dfrac{1}{2 \sqrt{1}} \bigg]}{1} \bigg]\\

 \\ \implies\bf  P = \bigg[ \dfrac{ \bigg(\dfrac{1}{2} \bigg) \times(\sqrt{1}+1) +0}{1} \bigg]\\

 \\ \implies\bf  P = \bigg[ \dfrac{ \bigg(\dfrac{1}{2} \bigg) \times(1+1) }{1} \bigg]\\

 \\ \implies\bf  P = \bigg[ \dfrac{ \bigg(\dfrac{1}{2} \bigg) \times(2) }{1} \bigg]\\

 \\ \implies\bf  P = \bigg(\dfrac{1}{2} \bigg)\times (2)\\

 \\ \implies\bf  P =1\\

• Hence –

 \\ \large \implies \red{ \boxed{\bf\lim_{x \to0} \dfrac{ log(2 + x) -  log(2) }{ \sqrt{1 + x} - 1}=1}}\\

Answered by hukam0685
7

Step-by-step explanation:

Given:

lim \: x -  > 0 \:  \frac{ log(2 + x) - log2 }{ \sqrt{1 + x} - 1 }  \\  \\

To find: Evaluate using L'Hospital rule

Solution:

  • While applying L'HOSPITAL rule,Ni need to simply the function,just check for 0/0 form.
  • The method is shown below:

By putting x=0

 \frac{ log(2 + 0) - log2 }{ \sqrt{1 + 0} - 1 }  \\  \\ =  >  \frac{ log(2)  -  log(2) }{1 - 1}   =  >  \frac{0}{0} \\  \\

Thus,apply L'HOSPITAL rule; Take derivative of numerator and denominator ,then apply limit

lim \: x -  > 0 \frac{  \frac{d}{dx}  \bigg(log(2 + x) - log2 \bigg) } {  \frac{d}{dx}  \bigg(\sqrt{1 + x} - 1 \bigg) }  \\  \\ lim \: x -  > 0 \:  \frac{ \frac{1}{2 + x} .1 - 0}{ \frac{1}{2 \sqrt{1 + x} } .1-0}  \\  \\ simplify \\  \\ lim \: x -  > 0 \: \frac{2 \sqrt{1 + x} }{2 + x}  \\  \\ apply \: limit \\  \\  \: =  >  \frac{2 \sqrt{1 + 0} }{2 + 0} \\  \\  =  >  \frac{2 \sqrt{1} }{2}  \\  \\  =  >  \frac{2}{2}  \\  \\  =  >1

Thus,

\bold{lim \: x -  > 0  \: \frac{ log(2 + x) - log2 }{ \sqrt{1 + x} - 1 } = 1}  \\  \\

Hope it helps you.

*Note: Don't do questions of limit using L'HOSPITAL rule in board exams.

To learn more on brainly:

1)lim x tends to 0 [(1+x)^1/x - e] / x is equal to

https://brainly.in/question/1225206

Similar questions