plz some one help me in this question
I will mark u as brainliest....
Answers
x² + 4x - 1 = 0
Subtract 4x from both sides.
⇒ x² - 1 = - 4x
Divide both sides by x.
⇒ (x² - 1) / x = - 4x / x
⇒ x - 1/x = - 4
Now take the square of both sides.
⇒ (x - 1/x)² = (- 4)²
⇒ x² + 1/x² - 2 = 16 → (1)
Add 4 to both sides.
⇒ x² + 1/x² - 2 + 4 = 16 + 4
⇒ x² + 1/x² + 2 = 20
Factorise LHS.
⇒ (x + 1/x)² = 20
From this, we get,
⇒ x + 1/x = √20 = 2√5
And from (1),
x² + 1/x² - 2 = 16
⇒ x² + 1/x² = 16 + 2 = 18
Question :-
If x² + 4x - 1 = 0 then find the value of
(i) x + 1/x
(ii) x² + 1/x²
Answer :-
(i) x + 1/x = 2√5
(ii) x² + 1/x² = 18
Solution :-
We can find value of x + 1/x from x² + 4x - 1 = 0.
x² + 4x - 1 = 0
⇒ x² + 4x = 1
⇒ x(x + 4) = 1
⇒ x + 4 = 1/x
⇒ x + 4 - 1/x = 0
⇒ x - 1/x = - 4
We know that
(a + b)² = (a - b)² + 4ab
Here a = x, b = 1/x
By substituting the values
⇒ (x + 1/x)² = (x - 1/x)² + 4(x)(1/x)
⇒ (x + 1/x)² = (x - 1/x)² + 4
⇒ (x + 1/x)² = (-4)² + 4
⇒ (x + 1/x)² = 16 + 4
⇒ (x + 1/x)² = 20
⇒ x + 1/x = √20
⇒ x + 1/x = √4 * √5
⇒ x + 1/x = 2(√5)
⇒ x + 1/x = 2√5
Squaring on both sides
(x + 1/x)² = (2√5)²
We know that
⇒ (x)² + (1/x)² + 2(x)(1/x) = 4(5)
[Since (a + b)² = a² + b² + 2ab]
⇒ x² + 1²/x² + 2 = 20
⇒ x² + 1/x² + 2 = 20
⇒ x² + 1/x² = 20 - 2