Math, asked by bhimsenraocom5, 9 months ago

plz someone answer this quickly ​

Attachments:

Answers

Answered by BrainlyPopularman
4

Question :

  \\ \:  \large  \to \: { \bold{show \:  \: that  :  \frac{ \sin( \theta) }{1 +  \cos( \theta) }  +  \frac{1 +  \cos( \theta) }{ \sin( \theta) }  = 2cosec( \theta)}}\\

ANSWER :–

TO PROVE :

  \\ \: { \bold{ \dfrac{ \sin( \theta) }{1 +  \cos( \theta) }  +  \dfrac{1 +  \cos( \theta) }{ \sin( \theta) }  = 2cosec( \theta)}}\\

SOLUTION :

Let's take L.H.S.

  \\ \: { \bold{  = \dfrac{ \sin( \theta) }{1 +  \cos( \theta) }  +  \dfrac{1 +  \cos( \theta) }{ \sin( \theta) }  }} \\

• We should write this as –

  \\ \: { \bold{  =   \dfrac{[ 1 +  \cos( \theta)] ^{2}  +  { \sin }^{2} ( \theta)}{ \sin( \theta)[1 +  \cos( \theta) ]}  }}\\

  \\ \: { \bold{  =   \dfrac{1 +  \cos ^{2} ( \theta) + 2 \cos( \theta)  +  { \sin }^{2} ( \theta)}{ \sin( \theta)[1 +  \cos( \theta) ]} \:  \: \large [  \: \because \:  \:  {(a + b)}^{2} =  {a}^{2}  +  {b}^{2}  + 2ab \:  ]  \:  \: }}\\

  \\ \: { \bold{  =   \dfrac{1 + 1 + 2 \cos( \theta) }{ \sin( \theta)[1 +  \cos( \theta) ]} \: \large  [  \: \because \:  \:    {sin}^{2}  \theta +  {cos}^{2} \: \theta = 1\:  ]  \:  \:}}\\

  \\ \: { \bold{  =   \dfrac{2+ 2 \cos( \theta) }{ \sin( \theta)[1 +  \cos( \theta) ]}  }}\\

  \\ \: { \bold{  =   \dfrac{2[1 +  \cos( \theta) ] }{ \sin( \theta)[1 +  \cos( \theta) ]}  }}\\

  \\ \: { \bold{  =   \dfrac{2 }{ \sin( \theta)}   \: \:   \large  [  \: \because \:  \:    \dfrac{1}{ \sin( \theta) }    \: \:  = cosec (\theta) ]  \:  \:  }}\\

  \\ \: { \bold{  =   2 \: cosec( \theta) }}\\

  \\ \: { \bold{  = R.H.S.   \:  \:  \:  \:  \: \: [Hence \:  \: proved]}}\\

 \rule {200}{2}

Similar questions