Math, asked by purbasha776, 11 months ago

plz someone help me to do this no.​

Attachments:

Answers

Answered by sandy1816
0

Answer:

your answer attached in the photo

Attachments:
Answered by tahseen619
4

Answer:

a) 0

b) ±√6

c) 3√6

Step-by-step explanation:

Given:

x -  \dfrac{1}{x}  =  \sqrt{2}

To find:

a) {x}^{2}  +  \dfrac{1}{ {x}^{2} }

b)x +  \dfrac{1}{x}

 c){x}^{3}  +  \dfrac{1}{ {x}^{3} }

Solution:

 a) x -  \dfrac{1}{x}  =  \sqrt{2}

[Squaring both side ]

 {(x  -   \frac{1}{x} )}^{2}  =  {( \sqrt{2} )}^{2}  \\  \\  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   -  2.x. \frac{1}{x}  = 2 \\  \\   {x}^{2}  +  \frac{1}{ {x}^{2} }   - 2 = 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2 + 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 4

Hence, The required value of a is 0

b)x  {}^{2}  + \dfrac{1}{x {}^{2} }  = 4 \:  \:  \:  \:  \: (from \:  \:  \:  \: a) \\  \\  {x}^{2}  + 2 +  \frac{1}{ {x}^{2} }  = 6\\  \\  {x}^{2}  + 2.x. \frac{1}{x}  +  \frac{1}{ {x}^{2} }  = 6 \\  \\  {(x +  \frac{1}{x}) }^{2}  = 6 \\  \\ x +  \frac{1}{x}  =  \pm \sqrt{6}

Hence the required value of b is ± √6

c)x +  \dfrac{1}{x}  =  \sqrt{6} \:  \:  \:  \:  \:  \:  \:  (from \:  \:  \: b) \\  \\

[cubing both side ]

 {(x +  \frac{1}{x}) }^{3}  =  { (\sqrt{6}) }^{3}  \\  \\ x {}^{3}  +  \frac{1}{ {x}^{3 } }  + 3.x. \frac{1}{x} (x +  \frac{1}{x} ) = 6 \sqrt{6}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3( \sqrt{6} ) = 6 \sqrt{6}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 6 \sqrt{6}  - 3 \sqrt{6}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 3 \sqrt{6}

Hence the required value of c is 36

Similar questions