Math, asked by geetadhankhar1, 2 months ago

plz tell answer with explanation.​

Attachments:

Answers

Answered by kauranmolpreet395
15

Answer:

Solution:

Let the unit place digit of a two-digit number be x.

Therefore, the tens place digit = 9-x

∵ 2-digit number = 10 x tens place digit + unit place digit

∴ Original number = 10(9-x)+x

According to the question, New number

= Original number + 27

10x+left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27

10+9-x=90-10x+x+27⇒10+9−x=90−10x+x+27

9x+9=117-9x⇒9x+9=117−9x

9x+9x=117-9⇒9x+9x=117−9

18x=108⇒18x=108

x={108}{18}=6⇒x=18108

=6

Hence, the 2-digit number = 10(9-x)+x = 10(9-6)+6 = 10 x 3 + 6 = 30 + 6 = 36

\huge\mathfrak\red{ur answer}

Answered by Anonymous
25

Answer:

Question :-

  • Sum of the digits of a two digit number is 9. When we interchange the digits, it is found that the resulting new number is greater than the original number by 27. What is the two digit number ?

Given :-

  • Sum of the digits of a two digit number is 9.
  • When we interchange the digits, it is found that the resulting new number is greater than the original number by 27.

To Find :-

  • What is the two digit number.

Solution :-

Let,

\mapsto \bf Ten's\: place =\: x

\mapsto \bf Unit's\: place =\: y

Hence, the required numbers is :

\leadsto \sf\bold{\green{Original\:  Number =\: 10x + y}}

Now,

\bigstar Sum of the digits of a two digit number is 9.

\implies \sf x + y =\: 9

\implies \sf\bold{\purple{x + y =\: 9\: ------\: (Equation\: No\: 1)}}\\

\bigstar When we interchange the digits we get :

\leadsto \sf 10y + x

\bigstar When we interchange the digits, it is found that the resulting new number is greater than the original number 27.

\implies \sf 10y + x =\: 27 + (10x + y)

\implies \sf 10y + x =\: 27 + 10x + y

\implies \sf 10y - y + x - 10x =\: 27

\implies \sf 9y - 9x =\: 27

\implies \sf 9(y - x) =\: 27

\implies \sf y - x =\: \dfrac{27}{9}

\implies \sf\bold{\purple{y - x =\: 3\: ------\: (Equation\: No\: 2)}}\\

Now, by adding the equation no 1 with the equation no 2 we get,

\implies \sf {\cancel{x}} + y + y {\cancel{- x}} =\: 9 + 3

\implies \sf y + y =\: 12

\implies \sf 2y =\: 12

\implies \sf y =\: \dfrac{\cancel{12}}{\cancel{2}}

\implies \sf\bold{\pink{y =\: 6}}

By putting y = 6 in the equation no 1 we get,

\implies \sf x + y =\: 9

\implies \sf x + 6 =\: 9

\implies \sf x =\: 9 - 6

\implies \sf\bold{\pink{x =\: 3}}

Hence, the required original number will be :

\longrightarrow \sf Original\: Number =\: 10x + y

\longrightarrow \sf Original\: Number =\: 10(3) + 6

\longrightarrow \sf Original\: Number =\: 30 + 6

\longrightarrow \sf\bold{\red{Original\: Number =\: 36}}

{\small{\bold{\underline{\therefore\: The\: two\: digit\: number\: is\: 36\: .}}}}

Similar questions