Math, asked by megha998, 1 month ago

plz tell asap.
I am.confused
plz tell with the proper steps
thx ​

Attachments:

Answers

Answered by SaniaBajaj
1

Answer:-

1) x + 90° = 125°

x = 125° - 90°

x = 35° ans.

2) 50 °+ 70° = x°

x° = 50° + 70°

x° =120° ans.

3) 30° + 40° = x°

x° = 30° + 40°

x = 70° ans.

4) x° + 2x° + 90° = 180°

3x° = 180° - 90°

3x° = 90°

x = 90° / 3 =30°

x = 30° ans.

5) y = 80°

x + y + 50° = 180°

x + 80° + 50° = 180°

x + 130° = 180°

x = 180° - 130°

x = 50°

x = 50° and y = 80° ans.

Answered by MasterDhruva
12

Solution (1) :-

First, we should find the value of ∠y.

Measure of y :-

\sf \leadsto Linear \: pair \: of \: angles = {180}^{\circ}

\sf \leadsto {125}^{\circ} + \angle{y} = {180}^{\circ}

\sf \leadsto \angle{y} = 180 - 125

\sf \leadsto \angle{y} = {55}^{\circ}

Now, we can find the value of ∠x.

Measure of x :-

\sf \leadsto {Angle \: sum \: property}_{(Triangle)} = {180}^{\circ}

\sf \leadsto {90}^{\circ} + {55}^{\circ} + \angle{x} = {180}^{\circ}

\sf \leadsto {145}^{\circ} + \angle{x} = {180}^{\circ}

\sf \leadsto \angle{x} = 180 - 145

\sf \leadsto \angle{x} = {35}^{\circ}

Solution (2) :-

First, we should find the value of ∠y.

Measure of y :-

\sf \leadsto {Angle \: sum \: property}_{(Triangle)} = {180}^{\circ}

\sf \leadsto {70}^{\circ} + {50}^{\circ} + \angle{y} = {180}^{\circ}

\sf \leadsto {120}^{\circ} + \angle{y} = {180}^{\circ}

\sf \leadsto \angle{y} = 180 - 120

\sf \leadsto \angle{y} = {60}^{\circ}

Now, we can find the value of ∠x.

Measure of ∠x :-

\sf \leadsto Linear \: pair \: of \: angles = {180}^{\circ}

\sf \leadsto {60}^{\circ} + \angle{x} = {180}^{\circ}

\sf \leadsto \angle{x} = 180 - 60

\sf \leadsto \angle{x} = {120}^{\circ}

Solution (3) :-

First, we should find the value of ∠y.

Measure of ∠y :-

\sf \leadsto {Angle \: sum \: property}_{(Triangle)} = {180}^{\circ}

\sf \leadsto {30}^{\circ} + {40}^{\circ} + \angle{y} = {180}^{\circ}

\sf \leadsto {70}^{\circ} + \angle{y} = {180}^{\circ}

\sf \leadsto \angle{y} = 180 - 70

\sf \leadsto \angle{y} = {110}^{\circ}

Now, we can find the value of ∠x.

Measure of ∠x :-

\sf \leadsto Linear \: pair \: of \: angles = {180}^{\circ}

\sf \leadsto {110}^{\circ} + \angle{x} = {180}^{\circ}

\sf \leadsto \angle{x} = 180 - 110

\sf \leadsto \angle{x} = {70}^{\circ}

Solution (4) :-

Measure of x :-

\sf \leadsto {Angle \: sum \: property}_{(Triangle)} = {180}^{\circ}

\sf \leadsto x + 2x + {90}^{\circ} = {180}^{\circ}

\sf \leadsto 3x + {90}^{\circ} = {180}^{\circ}

\sf \leadsto 3x = 180 - 90

\sf \leadsto 3x = 90

\sf \leadsto x = \dfrac{90}{3}

\sf \leadsto x = {30}^{\circ}

Solution (5) :-

Measure of y :-

We no that the vertically opposite angles are always equal. So,

\sf \leadsto \angle{y} = {80}^{\circ}

Measure of x :-

\sf \leadsto {Angle \: sum \: property}_{(Triangle)} = {180}^{\circ}

\sf \leadsto {50}^{\circ} + {80}^{\circ} + \angle{x} = {180}^{\circ}

\sf \leadsto {130}^{\circ} + \angle{x} = {180}^{\circ}

\sf \leadsto \angle{x} = 180 - 130

\sf \leadsto \angle{x} = {50}^{\circ}

Hence, solved !!

Attachments:

BrainlyPhantom: Nice answer!
MasterDhruva: Thank you ♡
Similar questions