Math, asked by aaditya7315, 1 year ago

Plz tell fast ..... plz plz plz​

Attachments:

Answers

Answered by jitekumar4201
1

Answer:

\dfrac{secx-tanx}{secx+tanx} = 1 -2secxtanx+2tan^{2}x

Step-by-step explanation:

Given that-

\dfrac{secx-tanx}{secx+tanx}

By rationalization method-

= \dfrac{secx-tanx}{secx+tanx}*\dfrac{secx-tanx}{secx-tanx}

= \dfrac{(secx-tanx)^{2} }{sec^{2}x-tan^{2}x  }

= \dfrac{sec^{2}x+tan^{2}x-2secxtanx }{sec^{2}x-tan^{2}x  }

But sec^{2}x = 1 + tan^{2}x

And sec^{2}x-tan^{2}x = 1

= \dfrac{(1+tan^{2}x)+tan^{2}x-2tanxsecx  }{1}

= 1 + tan^{2}x+tan^{2}x-2secxtanx

= 1 + 2tan^{2}x-2secxtanx

Hence, \dfrac{secx-tanx}{secx+tanx} = 1 -2secxtanx+2tan^{2}x

Hence Proved

Similar questions