Math, asked by ajay8949, 1 month ago

plz tell me the solution of the question.​

Attachments:

Answers

Answered by Mathkeeper
1

Step-by-step explanation:

We have,

 \lim_{x \rarr \infty } \dfrac{ \sqrt{ {x}^{2} +  {a}^{2}  }  +  \sqrt{ {x}^{2}  +  {b}^{2} } }{ \sqrt{ {x}^{2} + c^{2}  }  +  \sqrt{ {x}^{2} +  {d}^{2}  } }   \\

  = \lim_{x \rarr \infty } \dfrac{ \sqrt{ {x}^{2}  \bigg \{1+  { \bigg( \dfrac{a}{x} \bigg)}^{2}  \bigg \} }  +  \sqrt{ {x}^{2}   \bigg\{1+  { \bigg( \dfrac{b}{x} \bigg)}^{2}  \bigg \} } }{ \sqrt{ {x}^{2}   \bigg\{1+  { \bigg( \dfrac{c}{x} \bigg)}^{2}  \bigg \}  }  +  \sqrt{ {x}^{2}  \bigg\{1+  { \bigg( \dfrac{d}{x} \bigg)}^{2}  \bigg \} } }   \\

  = \lim_{x \rarr \infty } \dfrac{ x\sqrt{   1+  { \bigg( \dfrac{a}{x} \bigg)}^{2}   }  +  x\sqrt{  1+  { \bigg( \dfrac{b}{x} \bigg)}^{2}  } }{x \sqrt{    1+  { \bigg( \dfrac{c}{x} \bigg)}^{2} }  + x \sqrt{  1+  { \bigg( \dfrac{d}{x} \bigg)}^{2}  } }   \\

  = \lim_{x \rarr \infty } \dfrac{ \sqrt{   1+  { \bigg( \dfrac{a}{x} \bigg)}^{2}   }  +  \sqrt{  1+  { \bigg( \dfrac{b}{x} \bigg)}^{2}  } }{ \sqrt{    1+  { \bigg( \dfrac{c}{x} \bigg)}^{2} }  + \sqrt{  1+  { \bigg( \dfrac{d}{x} \bigg)}^{2}  } }   \\

  = \dfrac{ \sqrt{   1+  { \bigg( \dfrac{a}{ \infty } \bigg)}^{2}   }  +  \sqrt{  1+  { \bigg( \dfrac{b}{ \infty } \bigg)}^{2}  } }{ \sqrt{    1+  { \bigg( \dfrac{c}{ \infty } \bigg)}^{2} }  + \sqrt{  1+  { \bigg( \dfrac{d}{ \infty } \bigg)}^{2}  } }   \\

  = \dfrac{ \sqrt{   1   }  +  \sqrt{  1} }{ \sqrt{    1 }  + \sqrt{  1} }   \\

 \sf{ \:  = 1}

Similar questions